# Dynamical billiards
# 動態臺球
[](https://en.wikipedia.org/wiki/Dynamical_billiards#mw-head)[](https://en.wikipedia.org/wiki/Dynamical_billiards#p-search)
[](https://en.wikipedia.org/wiki/File:BunimovichStadium.svg)
Bunimovich體育場是一個動力臺球的混動系統
一個**臺球(系統)**是一個[動力系統](https://en.wikipedia.org/wiki/Dynamical_system "動力系統"),其中運動之間以直線和顆粒交替[鏡面反射](https://en.wikipedia.org/wiki/Specular_reflection "鏡面反射")從邊界。當粒子撞擊邊界時,它會從中反射而不會降低[速度](https://en.wikipedia.org/wiki/Speed "速度")。臺球動力系統是[臺球比賽的](https://en.wikipedia.org/wiki/Billiards "臺球")[漢密爾頓](https://en.wikipedia.org/wiki/Hamiltonian_mechanics "哈密??頓力學")理想化,但邊界所包含的區域可以具有矩形以外的形狀甚至是多維的。也可以在[非歐幾里德幾何](https://en.wikipedia.org/wiki/Non-Euclidean_geometry "非歐幾里德幾何")上研究動態臺球;實際上,對臺球的最初研究確定了它們在恒定負面的[表面上](https://en.wikipedia.org/wiki/Surface_(mathematics) "Surface (mathematics)")的[遍歷運動](https://en.wikipedia.org/wiki/Ergodic_theory "遍歷理論")[](https://en.wikipedia.org/wiki/Billiards "臺球")[](https://en.wikipedia.org/wiki/Non-Euclidean_geometry "非歐幾里德幾何")[](https://en.wikipedia.org/wiki/Ergodic_theory "遍歷理論")[](https://en.wikipedia.org/wiki/Surface_(mathematics) "表面(數學)")[曲率](https://en.wikipedia.org/wiki/Curvature "曲率")。對臺球進行的研究被稱為[外圍臺球](https://en.wikipedia.org/wiki/Outer_billiard "外面的臺球")理論,而不是被保存在一個區域內。
臺球中粒子的運動是在與邊界的反射之間具有恒定能量的直線(如果臺球桌的[黎曼度量](https://en.wikipedia.org/wiki/Riemannian_metric "黎曼度量")不是平坦的,則是[短程線](https://en.wikipedia.org/wiki/Geodesic "短程"))。所有[反射](https://en.wikipedia.org/wiki/Reflection_(physics) "反思(物理學)")都是[鏡面反射](https://en.wikipedia.org/wiki/Specular_reflection "鏡面反射"):碰撞前的[入射角](https://en.wikipedia.org/wiki/Angle_of_incidence_(optics) "入射角(光學)")等于碰撞后的[反射角](https://en.wikipedia.org/wiki/Angle_of_reflection "反射角度")。所述[序列](https://en.wikipedia.org/wiki/Sequence "序列")的反射是由描述**臺球地圖**完全表征粒子的運動。[](https://en.wikipedia.org/wiki/Riemannian_metric "黎曼度量")[](https://en.wikipedia.org/wiki/Reflection_(physics) "反思(物理學)")[](https://en.wikipedia.org/wiki/Specular_reflection "鏡面反射")[](https://en.wikipedia.org/wiki/Angle_of_incidence_(optics) "入射角(光學)")[](https://en.wikipedia.org/wiki/Angle_of_reflection "反射角度")[](https://en.wikipedia.org/wiki/Sequence "序列")
臺球捕捉哈密爾頓系統的所有復雜性,從[可積性](https://en.wikipedia.org/wiki/Integrable_system "可積系統")到[混沌運動](https://en.wikipedia.org/wiki/Chaos_theory "混沌理論"),沒有整合[運動方程](https://en.wikipedia.org/wiki/Equations_of_motion "運動方程")以確定其[龐加萊圖](https://en.wikipedia.org/wiki/Poincar%C3%A9_map "龐加萊地圖")的困難。[Birkhoff](https://en.wikipedia.org/wiki/George_David_Birkhoff "喬治大衛伯克霍夫")表明,具有[橢圓形](https://en.wikipedia.org/wiki/Ellipse "橢圓")桌子的臺球系統是可積的。
## 內容
* [1運動方程](https://en.wikipedia.org/wiki/Dynamical_billiards#Equations_of_motion)
* [2著名的臺球和臺球課程](https://en.wikipedia.org/wiki/Dynamical_billiards#Notable_billiards_and_billiard_classes)
* [2.1Hadamard的臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Hadamard's_billiards)
* [2.2Artin的臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Artin's_billiard)
* [2.3分散和半分散臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Dispersing_and_Semi-Dispersing_billiards)
* [2.4硬球系統](https://en.wikipedia.org/wiki/Dynamical_billiards#Hard_ball_system)
* [2.5洛倫茲氣體](https://en.wikipedia.org/wiki/Dynamical_billiards#Lorentz_gas)
* [2.6布尼莫維奇體育場](https://en.wikipedia.org/wiki/Dynamical_billiards#Bunimovich_stadium)
* [2.7廣義臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Generalized_billiards)
* [3量子混沌](https://en.wikipedia.org/wiki/Dynamical_billiards#Quantum_chaos)
* [4應用](https://en.wikipedia.org/wiki/Dynamical_billiards#Applications)
* [5另見](https://en.wikipedia.org/wiki/Dynamical_billiards#See_also)
* [6注意事項](https://en.wikipedia.org/wiki/Dynamical_billiards#Notes)
* [7參考文獻](https://en.wikipedia.org/wiki/Dynamical_billiards#References)
* [7.1西奈的臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Sinai's_billiards)
* [7.2奇怪的臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Strange_billiards)
* [7.3布尼莫維奇體育場](https://en.wikipedia.org/wiki/Dynamical_billiards#Bunimovich_stadium_2)
* [7.4廣義臺球](https://en.wikipedia.org/wiki/Dynamical_billiards#Generalized_billiards_2)
* [8外部鏈接](https://en.wikipedia.org/wiki/Dynamical_billiards#External_links)
## 運動方程\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=1 "編輯部分:運動方程")\]
質量為*m*的粒子的[哈密??頓](https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics) "哈密??頓量子(量子力學)")量是在表面沒有摩擦的情況下自由移動的:
{\\ displaystyle H(p,q)= {\\ frac {p ^ {2}} {2m}} + V(q)}
哪里{\\ displaystyle V(q)}是一個在該地區內設計為零的潛力{\\ displaystyle \\ Omega}粒子可以移動,否則無限遠:
{\\ displaystyle V(q)= {\\ begin {cases} 0&q \\ in \\ Omega \\\\\\ infty&q \\ notin \\ Omega \\ end {cases}}}
這種形式的潛力保證了邊界的[鏡面反射](https://en.wikipedia.org/wiki/Specular_reflection "鏡面反射")。動力學術語保證粒子在一條直線上移動,而沒有任何能量變化。如果粒子要在非歐幾里德[流形](https://en.wikipedia.org/wiki/Manifold "多種")上移動,那么哈密頓量將被替換為:
{\\ displaystyle H(p,q)= {\\ frac {1} {2m}} p ^ {i} p ^ {j} g\_ {ij}(q)+ V(q)}
哪里{\\ displaystyle g\_ {ij}(q)}是點的[度量張量](https://en.wikipedia.org/wiki/Metric_tensor "公制張量"){\\ displaystyle q \\; \\ in \\; \\ Omega}。由于這個哈密頓量的結構非常簡單,粒子[的運動方程式](https://en.wikipedia.org/wiki/Equations_of_motion "運動方程")[Hamilton-Jacobi方程](https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation "Hamilton-Jacobi方程")只不過是流形上的[測地方程](https://en.wikipedia.org/wiki/Geodesic_equation "測地方程"):粒子沿著[測地線](https://en.wikipedia.org/wiki/Geodesic "短程")移動。
## 著名的臺球和臺球課\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=2 "編輯部分:著名的臺球和臺球課程")\]
### 哈達瑪的臺球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=3 "編輯部分:Hadamard的臺球")\]
主要文章:[Hadamard的動力系統](https://en.wikipedia.org/wiki/Hadamard%27s_dynamical_system "Hadamard的動力系統")
Hadamard的臺球涉及自由點粒子在恒定負曲率表面上的運動,特別是具有負曲率的最簡單的緊致[黎曼表面](https://en.wikipedia.org/wiki/Riemann_surface "黎曼表面"),即2類表面(雙孔圓環)。該模型[完全可以解決](https://en.wikipedia.org/wiki/Exactly_solvable "完全可以解決"),并由表面上的[測地流程](https://en.wikipedia.org/wiki/Geodesic_flow "測地流程")給出。這是[雅克·哈達瑪](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈達瑪")([Jacques Hadamard)](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈達瑪")于1898年提出的有史以來最早研究的[確定性混沌的](https://en.wikipedia.org/wiki/Deterministic_chaos "確定性的混亂")例子。[](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈達瑪")
### Artin的臺球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=4 "編輯部分:Artin的臺球")\]
主要文章:[Artin臺球](https://en.wikipedia.org/wiki/Artin_billiard "Artin臺球")
Artin的臺球考慮了點粒子在恒定負曲率表面上的自由運動,特別是最簡單的非緊致[黎曼表面](https://en.wikipedia.org/wiki/Riemann_surface "黎曼表面"),一個具有一個尖點的表面。值得注意的是,它是完全可以解決的,但不僅是[遍歷性的,](https://en.wikipedia.org/wiki/Ergodic "遍歷")而且是[強烈混合的](https://en.wikipedia.org/wiki/Mixing_(mathematics) "混合(數學)")。這是[Anosov系統的](https://en.wikipedia.org/wiki/Anosov_flow "阿諾索夫流")一個例子。該系統最初由[Emil Artin](https://en.wikipedia.org/wiki/Emil_Artin "埃米爾·阿廷")于1924年研究。
### 分散和半分散臺球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=5 "編輯部分:分散和半分散臺球")\]
設*M*是無邊界的完全光滑黎曼流形,其最大[截面曲率](https://en.wikipedia.org/wiki/Sectional_curvature "截面曲率")不大于*K*且具有[注入半徑](https://en.wikipedia.org/wiki/Glossary_of_Riemannian_and_metric_geometry "黎曼和公制幾何術語表"){\\ displaystyle \\ rho> 0}。考慮*n個*測地[凸](https://en.wikipedia.org/wiki/Convex_set "凸集")子集(墻)的集合{\\ displaystyle B\_ {i} \\ subset M},{\\ displaystyle i = 1,\\ ldots,n}這樣它們的邊界就是一個平滑的子流形。讓{\\ displaystyle B = M \\(\\ bigcup \_ {i = 1} ^ {n} \\ operatorname {Int}(B\_ {i}))},哪里{\\ displaystyle \\ operatorname {Int}(B\_ {i})}表示該組的內部{\\ displaystyle B\_ {i}}。這套{\\ displaystyle B \\ subset M}將被稱為臺球桌。現在考慮一個粒子在集合*B內*以單位速度在測地線上移動,直到它到達其中一個集合*B*i(這種事件稱為碰撞),在那里它根據法則反映“入射角等于反射角“(如果它到達其中一組){\\ displaystyle B\_ {i} \\ cap B\_ {j}},{\\ displaystyle i \\ neq j},那個時刻之后沒有定義軌跡)。這種動力系統稱為**半分散臺球**。如果墻壁是嚴格凸起的,則臺球稱為**分散**。命名的動機是觀察到局部平行的軌跡束在與墻壁的嚴格凸起部分碰撞后分散,但在與墻壁的平坦部分碰撞后保持局部平行。
分散邊界對于臺球起著相同的作用,因為負[曲率](https://en.wikipedia.org/wiki/Curvature "曲率")對于[測地線](https://en.wikipedia.org/w/index.php?title=Geodesic_as_Hamiltonian_flow&action=edit&redlink=1 "測地線為哈密頓量流(頁面不存在)")流動起作用,導致動力學的指數[不穩定](https://en.wikipedia.org/wiki/Instability "不穩定性")。正是這種分散機制賦予了分散臺球最強大的[混亂](https://en.wikipedia.org/wiki/Chaos_theory "混沌理論")特性,正如[Yakov G. Sinai](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")所建立的[那樣](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")。[\[1\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-1)即,臺球是[遍歷](https://en.wikipedia.org/wiki/Ergodicity "遍歷"),[混合](https://en.wikipedia.org/wiki/Mixing_(mathematics) "混合(數學)"),[伯努利](https://en.wikipedia.org/wiki/Bernoulli_scheme "伯努利計劃"),具有正的Kolmogorov-西奈[熵](https://en.wikipedia.org/wiki/Entropy "熵")和[指數衰減](https://en.wikipedia.org/wiki/Exponential_decay "指數衰減")的[相互關系](https://en.wikipedia.org/wiki/Correlations "相關性")。
一般半分散臺球的混沌特性并不是很清楚,然而,自1975年以來,一些重要類型的半分散臺球,**硬球氣體的**一些細節進行了研究(見下一節)。
Dmitry Burago和[Serge Ferleger](https://en.wikipedia.org/w/index.php?title=Serge_Ferleger&action=edit&redlink=1 "Serge Ferleger(頁面不存在)")[\[2\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-2)關于非簡并半分散臺球碰撞數量的統一估計的一般結果允許建立其[拓撲熵的](https://en.wikipedia.org/wiki/Topological_entropy "拓撲熵")有限性,并且不超過周期軌跡的指數增長。[\[3\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-3)相比之下,*退化的*半分散臺球可能具有無限的拓撲熵。[\[4\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-4)
### 硬球系統\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=6 "編輯部分:硬球系統")\]
### 洛倫茲氣\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=7 "編輯部分:洛倫茲汽油")\]
[](https://en.wikipedia.org/wiki/File:SinaiBilliard.svg)
洛倫茲氣體中的軌跡
**洛倫茲氣體**表是一個正方形,從中心移開一個圓盤;桌子是平的,沒有曲率。臺球是通過研究兩個相互作用的磁盤在一個正方形內反彈的行為而產生的,它反射了正方形的邊界并相互脫離。通過消除質心作為配置變量,兩個相互作用的盤的動力學減少到西奈臺球的動力學。
[Yakov G. Sinai](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")引入了臺球作為顯示物理熱力學性質的相互作用[哈密??頓體系的](https://en.wikipedia.org/wiki/Hamiltonian_system "哈密??頓體系")一個例子:它所有可能的軌跡都是[遍歷的,](https://en.wikipedia.org/wiki/Ergodic "遍歷")并且它具有正的[Lyapunov指數](https://en.wikipedia.org/wiki/Lyapunov_exponent "Lyapunov指數")。
西奈在這個模型中取得的巨大成就是為了表明經典的[玻爾茲曼 - 吉布斯合奏](https://en.wikipedia.org/w/index.php?title=Boltzmann%E2%80%93Gibbs_ensemble&action=edit&redlink=1 "Boltzmann-Gibbs合奏(頁面不存在)")的[理想氣體](https://en.wikipedia.org/wiki/Ideal_gas "理想的氣體")基本上是最大混亂的哈達瑪臺球。
### 布尼莫維奇體育場\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=8 "編輯部分:Bunimovich體育場")\]
名為**Bunimovich體育場**的桌子是一個長方形的半圓形,形狀稱為[體育場](https://en.wikipedia.org/wiki/Stadium_(geometry) "體育場(幾何)")。直到[Leonid Bunimovich](https://en.wikipedia.org/wiki/Leonid_Bunimovich "列昂尼德布尼莫維奇")介紹,具有正[Lyapunov指數的](https://en.wikipedia.org/wiki/Lyapunov_exponent "Lyapunov指數")臺球被認為需要凸散射,例如西奈臺球的圓盤,以產生軌道的指數發散。Bunimovich表明,通過考慮超出凹區域聚焦點的軌道,可以獲得指數發散。
### 廣義臺球\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=9 "編輯部分:廣義臺球")\]
廣義臺球(GB)描述了封閉域內質點(粒子)的運動{\\ displaystyle \\ Pi \\,\\ subset \\,\\ mathbb {R} ^ {n}}具有分段平滑的邊界{\\ displaystyle \\ Gamma}。在邊界上{\\ displaystyle \\ Gamma}當粒子經歷廣義臺球定律的作用時,點的速度被轉換。[Lev D. Pustyl'nikov](https://en.wikipedia.org/w/index.php?title=Lev_D._Pustyl%27nikov&action=edit&redlink=1 "Lev D. Pustyl'nikov(頁面不存在)")在一般情況下引入了GB[\[5\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln1-5),在這種情況下{\\ displaystyle \\ Pi}是一個平行六面體[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)與[熱力學第二定律](https://en.wikipedia.org/wiki/Second_law_of_thermodynamics "熱力學第二定律")的正當性有關。從物理角度來看,GB描述了一種由在容器中移動的有限許多顆粒組成的氣體,同時容器壁加熱或冷卻。概括的本質如下。當粒子撞擊邊界{\\ displaystyle \\ Gamma},它的速度在給定函數的幫助下變換{\\ displaystyle f(\\ gamma,\\,t)},在直接產品上定義{\\ displaystyle \\ Gamma \\,\\ times \\,\\ mathbb {R} ^ {1}}(哪里{\\ displaystyle \\ mathbb {R} ^ {1}}是真正的路線,{\\ displaystyle \\ gamma \\,\\ in \\,\\ Gamma}是邊界的一個點{\\ displaystyle t \\,\\ in \\,\\ mathbb {R} ^ {1}}根據以下法律,是時間)。假設粒子的軌跡隨著速度移動{\\ displaystyle v},相交{\\ displaystyle \\ Gamma}在這一點上{\\ displaystyle \\ gamma \\,\\ in \\,\\ Gamma}在時間{\\ displaystyle t ^ {\*}}。然后在時間{\\ displaystyle t ^ {\*}}粒子獲得速度{\\ displaystyle v ^ {\*}}就好像它從無限重的飛機上進行彈性推動一樣{\\ displaystyle \\ Gamma ^ {\*}},與之相切{\\ displaystyle \\ Gamma}在這一點上{\\ displaystyle \\ gamma},及時{\\ displaystyle t ^ {\*}}沿著法線移動到{\\ displaystyle \\ Gamma}在{\\ displaystyle \\ gamma}隨著速度{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}}(\\ gamma,\\,t ^ {\*})}。我們強調邊界本身的*位置*是固定的,而它對粒子的作用是通過函數定義的{\\ displaystyle f}。
我們采取飛機運動的正向{\\ displaystyle \\ Gamma ^ {\*}}是對*內部*的{\\ displaystyle \\ Pi}。因此,如果衍生品{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}}(\\ gamma,\\,t)\\;> \\; 0},然后粒子在撞擊后加速。
如果速度{\\ displaystyle v ^ {\*}}作為上述反射定律的結果,由粒子獲得的,被引導到域的內部{\\ displaystyle \\ Pi},然后粒子將離開邊界并繼續移動{\\ displaystyle \\ Pi}直到下一次碰撞{\\ displaystyle \\ Gamma}。如果速度{\\ displaystyle v ^ {\*}}是針對外面的{\\ displaystyle \\ Pi}然后粒子繼續存在{\\ displaystyle \\ Gamma}在這一點上{\\ displaystyle \\ gamma}直到某個時間{\\ displaystyle {\\ tilde {t}} \\;> \\; t ^ {\*}}與邊界的相互作用將迫使粒子離開它。
如果功能{\\ displaystyle f(\\ gamma,\\,t)}不依賴于時間{\\ displaystyle t};即{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}} \\; = \\; 0},廣義臺球與經典臺球相吻合。
這種廣義反射定律非常自然。首先,它反映了一個明顯的事實,即帶有氣體的容器壁是不動的。其次,墻壁對粒子的作用仍然是經典的彈性推力。從本質上講,我們考慮以給定的速度無限移動邊界。
它被認為是邊界的反射{\\ displaystyle \\ Gamma}在經典力學(牛頓案)和相對論(相對論案例)的框架內。
主要結果:在牛頓的情況下,粒子的能量是有界的,吉布斯熵是常數,[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)[\[7\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln3-7)[\[8\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln7-8)(在注釋中)和相對論的情況下粒子的能量,吉布斯熵,熵與相對于相位體積增長到無窮大,[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)[\[8\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln7-8)(在注釋中),對廣義臺球的引用。
## 量子混沌\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=10 "編輯部分:量子混亂")\]
臺球的量子版本很容易以多種方式進行研究。如上所述,臺球的經典哈密頓量被替換為靜態[薛定諤方程](https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation "薛定諤方程"){\\ displaystyle H \\ psi \\; = \\; E \\ psi}或者更確切地說,
{\\ displaystyle - {\\ frac {\\ hbar ^ {2}} {2m}} \\ nabla ^ {2} \\ psi \_ {n}(q)= E\_ {n} \\ psi \_ {n}(q)}
哪里{\\ displaystyle \\ nabla ^ {2}}是[拉普拉斯人](https://en.wikipedia.org/wiki/Laplacian "拉普拉斯")。在該地區之外的無限潛力{\\ displaystyle \\ Omega}但其中的零轉換為[Dirichlet邊界條件](https://en.wikipedia.org/wiki/Dirichlet_boundary_conditions "Dirichlet邊界條件"):
{\\ displaystyle \\ psi \_ {n}(q)= 0 \\ quad {\\ mbox {for}} \\ quad q \\ notin \\ Omega}
像往常一樣,波函數被認為是[正交的](https://en.wikipedia.org/wiki/Orthonormal "正交"):
{\\ displaystyle \\ int \_ {\\ Omega} {\\ overline {\\ psi \_ {m}}}(q)\\ psi \_ {n}(q)\\,dq = \\ delta \_ {mn}}
奇怪的是,自由場Schr?dinger方程與[亥姆霍茲方程](https://en.wikipedia.org/wiki/Helmholtz_equation "亥姆霍茲方程")相同,
{\\ displaystyle \\ left(\\ nabla ^ {2} + k ^ {2} \\ right)\\ psi = 0}
同
{\\ displaystyle k ^ {2} = {\\ frac {1} {\\ hbar ^ {2}}} 2mE\_ {n}}
這意味著二維和三維量子臺球可以通過給定形狀的[雷達腔](https://en.wikipedia.org/wiki/Radar_cavity "雷達腔")的經典共振模式來建模,從而為實驗驗證打開了大門。(雷達腔模式的研究必須限于[橫向磁](https://en.wikipedia.org/wiki/Transverse_magnetic "橫向磁場")(TM)模式,因為這些模式遵循Dirichlet邊界條件)。
半經典極限對應于{\\ displaystyle \\ hbar \\; \\ to \\; 0}可以看出相當于{\\ displaystyle m \\; \\ to \\; \\ infty},質量增加,使其表現經典。
作為一般性陳述,可以說每當經典運動方程是[可積的](https://en.wikipedia.org/wiki/Integrable "積")(例如矩形或圓形臺球桌),那么臺球的量子力學版本就完全可以解決。當經典系統混沌時,量子系統通常不能完全解決,并且在量化和評估方面存在許多困難。混沌量子系統的一般研究稱為[量子混沌](https://en.wikipedia.org/wiki/Quantum_chaos "量子混沌")。
橢圓形桌子上留下疤痕的一個特別引人注目的例子是觀察所謂的[量子海市蜃樓](https://en.wikipedia.org/wiki/Quantum_mirage "量子海市蜃樓")。
## 應用\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=11 "編輯部分:應用程序")\]
量子臺球理論最實際應用與[雙包層光纖有關](https://en.wikipedia.org/wiki/Double-clad_fiber "雙包層光纖")。在這種[光纖激光器中](https://en.wikipedia.org/wiki/Fiber_laser "光纖激光器"),具有低[數值孔徑](https://en.wikipedia.org/wiki/Numerical_aperture "數值孔徑")的小芯限制了信號,寬包層限制了多模泵。在[近軸近似中](https://en.wikipedia.org/wiki/Paraxial_approximation "近軸近似"),包層中泵浦的復雜場在量子臺球中表現得像波函數。具有瘢痕形成的包層的模式可以避免芯,并且對稱配置增強了這種效果。混沌纖維[\[9\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Doya-9)提供良好的耦合;在第一近似中,這種光纖可以用與理想化臺球相同的方程來描述。具有圓形對稱性的纖維中的耦合特別差,而具有靠近螺旋塊的核心的螺旋形纖維顯示出良好的耦合性質。小螺旋變形迫使所有疤痕與核心耦合。[\[10\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-diri-10)在微波爐腔體的體育場形狀被選擇成使得微波在空腔的整個區域均勻地分布和食品將得到均勻地加熱。\[*[引證需要](https://en.wikipedia.org/wiki/Wikipedia:Citation_needed "維基百科:需要引文")*\]
## 另見\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=12 "編輯部分:另見")\]
* [Fermi-Ulam模型](https://en.wikipedia.org/wiki/Fermi%E2%80%93Ulam_model "Fermi-Ulam模型")(帶有擺動墻的臺球)
* [Lubachevsky-Stillinger](https://en.wikipedia.org/wiki/Lubachevsky-Stillinger_algorithm "Lubachevsky-Stillinger算法")壓縮[算法](https://en.wikipedia.org/wiki/Lubachevsky-Stillinger_algorithm "Lubachevsky-Stillinger算法")模擬硬球不僅與邊界碰撞,而且在尺寸增大時也會相互碰撞[\[11\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-11)
## 筆記\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=13 "編輯部分:備注")\]
1. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-1 "跳起來")**[http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0249.0260.ocr.pdf](http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0249.0260.ocr.pdf)
2. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-2 "跳起來")**Burago,D。;Ferleger,S。;Kononenko,A。(1998年1月1日)。“對半分散臺球碰撞次數的統一估計”。*數學年鑒*。**147**(3):695-708。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.2307 / 120962](https://doi.org/10.2307%2F120962)。[JSTOR](https://en.wikipedia.org/wiki/JSTOR "JSTOR")?[120962](https://www.jstor.org/stable/120962)。
3. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-3 "跳起來")**Burago,D。;Ferleger,S。(1997年5月26日)。[“半分散臺球的拓撲熵”](https://www.researchgate.net/publication/2756974_Topological_Entropy_Of_Semi-Dispersing_Billiards)。*遍歷理論與動力系統*。**18**(4):791。[DOI](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1017 / S0143385798108246](https://doi.org/10.1017%2FS0143385798108246)。
4. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-4 "跳起來")**Burago,D。(2006年2月1日)。[“無限拓撲熵的半分散臺球”](http://journals.cambridge.org/article_S0143385704001002)。*遍歷理論與動力系統*。**26**(1):45-52。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1017 / S0143385704001002](https://doi.org/10.1017%2FS0143385704001002)\- 通過劍橋期刊在線。
5. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln1_5-0 "跳起來")**Pustyl'nikov,LD(1999)。“熵增法則和廣義臺球”。*[俄羅斯數學調查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄羅斯數學調查")*。**54**(3):650-651。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1999RuMaS..54..650P](http://adsabs.harvard.edu/abs/1999RuMaS..54..650P)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1070 / rm1999v054n03abeh000168](https://doi.org/10.1070%2Frm1999v054n03abeh000168)。
6. ^[跳到:***a***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-0)[***b***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-1)[***c***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-2)Pustyl'nikov,LD(1995)。“Poincaré模型,來自力學的熱力學第二定律的rogorous證明,以及Fermi加速機制”。*[俄羅斯數學調查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄羅斯數學調查")*。**50**(1):145-189。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1995RuMaS..50..145P](http://adsabs.harvard.edu/abs/1995RuMaS..50..145P)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1070 / rm1995v050n01abeh001663](https://doi.org/10.1070%2Frm1995v050n01abeh001663)。
7. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln3_7-0 "跳起來")**Pustyl'nikov,LD(2005)。“球中的廣義牛頓周期臺球”。*UMN*。**60**(2):171-172。[俄語數學調查中的](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄羅斯數學調查")英文翻譯,60(2),pp.365-366(2005)。
8. ^[跳到:***a***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln7_8-0)[***d***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln7_8-1)Deryabin,Mikhail V。Pustyl'nikov,Lev D.(2007)。“非平衡氣體和廣義臺球”。*統計物理學報*。**126**(1):117-132。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2007JSP ... 126..117D](http://adsabs.harvard.edu/abs/2007JSP...126..117D)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1007 / s10955-006-9250-4](https://doi.org/10.1007%2Fs10955-006-9250-4)。
9. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Doya_9-0 "跳起來")**Leproux,P。;S. Fevrier;V. Doya;P. Roy;D. Pagnoux(2003年)。[“利用泵的混沌傳播建模和優化雙包層光纖放大器”](http://www.ingentaconnect.com/content/ap/of/2001/00000007/00000004/art00361)。*[光纖技術](https://en.wikipedia.org/wiki/Optical_Fiber_Technology "光纖技術")*。**7**(4):324-339。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2001OptFT ... 7..324L](http://adsabs.harvard.edu/abs/2001OptFT...7..324L)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1006 / ofte.2001.0361](https://doi.org/10.1006%2Fofte.2001.0361)。
10. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-diri_10-0 "跳起來")**Kouznetsov,D。;Moloney,JV(2004)。[“Dirichlet Laplacian模式的邊界行為”](http://www.metapress.com/content/be0lua88cwybywnl/?p=5464d03ba7e7440f9827207df673c804&pi=6)。*[現代光學雜志](https://en.wikipedia.org/wiki/Journal_of_Modern_Optics "現代光學雜志")*。**51**(13):1955-1962。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2004JMOp ... 51.1955K](http://adsabs.harvard.edu/abs/2004JMOp...51.1955K)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1080 / 09500340408232504](https://doi.org/10.1080%2F09500340408232504)。\[*[永久死鏈接](https://en.wikipedia.org/wiki/Wikipedia:Link_rot "維基百科:鏈接腐爛")*\]
11. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-11 "跳起來")**BD Lubachevsky和FH Stillinger,隨機磁盤包裝的幾何特性,J。Statistical Physics 60(1990),561-583[http://www.princeton.edu/~fhs/geodisk/geodisk.pdf](http://www.princeton.edu/~fhs/geodisk/geodisk.pdf)
## 參考文獻\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=14 "編輯部分:參考")\]
### 西奈的臺球\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=15 "編輯部分:西奈的臺球")\]
* 西奈,雅。G.(1963)。“\[關于動態統計力學系統的遍歷假設的基礎\]”。*[Doklady Akademii Nauk SSSR](https://en.wikipedia.org/wiki/Doklady_Akademii_Nauk_SSSR "Doklady Akademii Nauk SSSR")*(俄文)。**153**(6):1261-1264。(英語,*SOV。數學Dokl。***4**(1963)第1818至1822年)。
* 雅。G. Sinai,“具有彈性反射的動力系統”,*[俄羅斯數學調查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄羅斯數學調查")*,**25**,(1970)第137-191頁。
* VI Arnold和A.*Avez,Théorieergodiquedessystèmspynamiques*,(1967),Gauthier-Villars,Paris。(英文版:Benjamin-Cummings,Reading,Mass.1968)。*(為西奈的臺球提供討論和參考。)*
* D. Heitmann,JP Kotthaus,“Quantum Dot Arrays的光譜學”,*Physics Today*(1993),第56-63頁。*(回顧了西奈臺球的量子版本的實驗測試,實現了硅片上的納米級(介觀)結構。)*
* S. Sridhar和WT Lu,“[Sinai Billiards,Ruelle Zeta-functions和Ruelle Resonances:Microwave Experiments](https://link.springer.com/content/pdf/10.1023/A:1019714808787.pdf)”,(2002)*Journal of Statistical Physics*,Vol。**108**第5/6號,第755-766頁。
* Linas Vepstas,*[Sinai's Billiards](http://www.linas.org/art-gallery/billiards/billiards.html)*,(2001)。*(在三維空間中提供西奈臺球的光線跟蹤圖像。這些圖像提供了系統強烈遍歷性的圖形直觀演示。)*
* N. Chernov和R. Markarian,“Chaotic Billiards”,2006,數學調查和專著127號,AMS。
### 奇怪的臺球\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=16 "編輯部分:奇怪的臺球")\]
* T.Schürmann和I. Hoffmann,*n-simplexes中奇怪臺球的熵。*J. Phys。A28,第5033頁,1995年.PDF-[文件](https://arxiv.org/abs/nlin/0208048)
### 布尼莫維奇體育場\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=17 "編輯部分:Bunimovich體育場")\]
* LABunimovich(1979)。“論無處分散臺球的遍歷性”。*Commun Math Phys*。**65**(3):295-312。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1979CMaPh..65..295B](http://adsabs.harvard.edu/abs/1979CMaPh..65..295B)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1007 / BF01197884](https://doi.org/10.1007%2FBF01197884)。
* LABunimovich&Ya。G.西奈(1980)。“分散臺球的馬爾可夫分區”。*Commun Math Phys*。**78**(2):247-280。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1980CMaPh..78..247B](http://adsabs.harvard.edu/abs/1980CMaPh..78..247B)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "數字對象標識符"):[10.1007 / bf01942372](https://doi.org/10.1007%2Fbf01942372)。
* [Flash動畫說明混亂的Bunimovich體育場](http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Chaos/Bunimovich/Bunimovich.html)
### 廣義臺球\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=18 "編輯部分:廣義臺球")\]
* MV Deryabin和LD Pustyl'nikov,“廣義相對論臺球”,*Reg。和混亂的Dyn。*8(3),pp.283-296(2003)。
* MV Deryabin和LD Pustyl'nikov,“關于外力場中的廣義相對論臺球”,*數學物理學中的字母*,63(3),第195-207頁(2003)。
* MV Deryabin和LD Pustyl'nikov,“廣義相對論臺球中的指數吸引子”,*Comm。數學。物理學。*248(3),pp.527-552(2004)。
## 外部鏈接\[[編輯](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=19 "編輯部分:外部鏈接")\]
* [魏斯坦,埃里克W.](https://en.wikipedia.org/wiki/Eric_W._Weisstein "Eric W. Weisstein")[“臺球”](http://mathworld.wolfram.com/Billiards.html)。*[MathWorld](https://en.wikipedia.org/wiki/MathWorld "MathWorld")*。
* [西奈臺球的模擬](https://archive.is/20121223235637/http://xweb.geos.ed.ac.uk/~stephan/mod_SinaiBilliard.en.html)(Stephan Matthiesen)
| 隱藏
* [v](https://en.wikipedia.org/wiki/Template:Chaos_theory "模板:混沌理論")
* [?](https://en.wikipedia.org/wiki/Template_talk:Chaos_theory "模板談話:混沌理論")
* [?](https://en.wikipedia.org/w/index.php?title=Template:Chaos_theory&action=edit)
[混沌理論](https://en.wikipedia.org/wiki/Chaos_theory "混沌理論")
|
| --- |
| 混沌理論 |
* [Anosov微分同胚](https://en.wikipedia.org/wiki/Anosov_diffeomorphism "Anosov微分同胚")
* [分岔理論](https://en.wikipedia.org/wiki/Bifurcation_theory "分岔理論")
* [蝴蝶效應](https://en.wikipedia.org/wiki/Butterfly_effect "蝴蝶效應")
* [組織發展中的混沌理論](https://en.wikipedia.org/wiki/Chaos_theory_in_organizational_development "組織發展中的混沌理論")
* [復雜](https://en.wikipedia.org/wiki/Complexity "復雜")
* [控制混亂](https://en.wikipedia.org/wiki/Control_of_chaos "控制混亂")
* [動力系統](https://en.wikipedia.org/wiki/Dynamical_system "動力系統")
* [混亂的邊緣](https://en.wikipedia.org/wiki/Edge_of_chaos "混亂的邊緣")
* [分形](https://en.wikipedia.org/wiki/Fractal "分形")
* [可預測性](https://en.wikipedia.org/wiki/Predictability "可預測性")
* [量子混沌](https://en.wikipedia.org/wiki/Quantum_chaos "量子混沌")
* [圣達菲研究所](https://en.wikipedia.org/wiki/Santa_Fe_Institute "圣達菲研究所")
* [混亂的同步](https://en.wikipedia.org/wiki/Synchronization_of_chaos "混亂的同步")
* [意想不到的后果](https://en.wikipedia.org/wiki/Unintended_consequences "意想不到的后果")
|
[](https://en.wikipedia.org/wiki/File:C%C3%B4ne_textileII.png "圓錐形紡織殼")
[](https://en.wikipedia.org/wiki/File:Circle_map_bifurcation.jpeg "圓形地圖與黑色阿諾德語")
|
| [混沌地圖](https://en.wikipedia.org/wiki/Chaos_theory "混沌理論")
([列表](https://en.wikipedia.org/wiki/List_of_chaotic_maps "混亂地圖列表")) |
* [阿諾德的舌頭](https://en.wikipedia.org/wiki/Arnold_tongue "阿諾德的舌頭")
* [阿諾德的貓圖](https://en.wikipedia.org/wiki/Arnold%27s_cat_map "阿諾德的貓圖")
* [貝克的地圖](https://en.wikipedia.org/wiki/Baker%27s_map "貝克的地圖")
* [復雜的二次映射](https://en.wikipedia.org/wiki/Complex_quadratic_polynomial "復二次多項式")
* [復雜的平方圖](https://en.wikipedia.org/wiki/Complex_squaring_map "復雜的平方圖")
* [耦合圖格](https://en.wikipedia.org/wiki/Coupled_map_lattice "耦合圖格")
* [雙擺](https://en.wikipedia.org/wiki/Double_pendulum "雙擺")
* [雙滾動吸引器](https://en.wikipedia.org/wiki/Double_scroll_attractor "雙滾動吸引器")
* [達芙方程](https://en.wikipedia.org/wiki/Duffing_equation "達芙方程")
* [達芙地圖](https://en.wikipedia.org/wiki/Duffing_map "達芙地圖")
* [二元變換](https://en.wikipedia.org/wiki/Dyadic_transformation "二元變換")
* 動態臺球
* [外](https://en.wikipedia.org/wiki/Outer_billiard "外面的臺球")
* [指數圖](https://en.wikipedia.org/wiki/Exponential_map_(discrete_dynamical_systems) "指數圖(離散動力系統)")
* [高斯地圖](https://en.wikipedia.org/wiki/Gauss_iterated_map "高斯迭代地圖")
* [Gingerbreadman地圖](https://en.wikipedia.org/wiki/Gingerbreadman_map "Gingerbreadman地圖")
* [Hénon地圖](https://en.wikipedia.org/wiki/H%C3%A9non_map "Hénon地圖")
* [馬蹄形圖](https://en.wikipedia.org/wiki/Horseshoe_map "馬蹄形圖")
* [池田地圖](https://en.wikipedia.org/wiki/Ikeda_map "池田地圖")
* [區間交換地圖](https://en.wikipedia.org/wiki/Interval_exchange_transformation "區間交換轉換")
* [Kaplan-Yorke地圖](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Yorke_map "Kaplan-Yorke地圖")
* [物流地圖](https://en.wikipedia.org/wiki/Logistic_map "物流地圖")
* [洛倫茲體系](https://en.wikipedia.org/wiki/Lorenz_system "洛倫茲體系")
* [多卷吸引子](https://en.wikipedia.org/wiki/Multiscroll_attractor "多卷吸引子")
* [Rabinovich-Fabrikant方程](https://en.wikipedia.org/wiki/Rabinovich%E2%80%93Fabrikant_equations "Rabinovich-Fabrikant方程")
* [R?ssler吸引子](https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor "R?ssler吸引子")
* [標準地圖](https://en.wikipedia.org/wiki/Standard_map "標準地圖")
* [搖擺阿特伍德的機器](https://en.wikipedia.org/wiki/Swinging_Atwood%27s_machine "搖擺阿特伍德的機器")
* [帳篷地圖](https://en.wikipedia.org/wiki/Tent_map "帳篷地圖")
* [Tinkerbell地圖](https://en.wikipedia.org/wiki/Tinkerbell_map "Tinkerbell地圖")
* [范德爾波振蕩器](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator "范德爾波振蕩器")
* [Zaslavskii地圖](https://en.wikipedia.org/wiki/Zaslavskii_map "Zaslavskii地圖")
|
| 混沌系統 |
* [彈跳球動力學](https://en.wikipedia.org/wiki/Bouncing_ball_dynamics "彈跳球動力學")
* [蔡的電路](https://en.wikipedia.org/wiki/Chua%27s_circuit "蔡的電路")
* [經濟泡沫](https://en.wikipedia.org/wiki/Economic_bubble "經濟泡沫")
* [FPUT問題](https://en.wikipedia.org/wiki/Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou_problem "Fermi-Pasta-Ulam-Tsingou問題")
* [傾斜-A-旋渦](https://en.wikipedia.org/wiki/Tilt-A-Whirl "傾斜-A-旋渦")
|
| 混沌理論家 |
* [邁克爾貝瑞](https://en.wikipedia.org/wiki/Michael_Berry_(physicist) "邁克爾貝瑞(物理學家)")
* [瑪麗卡特賴特](https://en.wikipedia.org/wiki/Mary_Cartwright "瑪麗卡特賴特")
* [Leon O. Chua](https://en.wikipedia.org/wiki/Leon_O._Chua "Leon O. Chua")
* [米切爾費根鮑姆](https://en.wikipedia.org/wiki/Mitchell_Feigenbaum "米切爾費根鮑姆")
* [Celso Grebogi](https://en.wikipedia.org/wiki/Celso_Grebogi "Celso Grebogi")
* [馬丁古茲威勒](https://en.wikipedia.org/wiki/Martin_Gutzwiller "馬丁古茲威勒")
* [Brosl Hasslacher](https://en.wikipedia.org/wiki/Brosl_Hasslacher "Brosl Hasslacher")
* [米歇爾·赫農](https://en.wikipedia.org/wiki/Michel_H%C3%A9non "米歇爾·赫農")
* [Svetlana Jitomirskaya](https://en.wikipedia.org/wiki/Svetlana_Jitomirskaya "Svetlana Jitomirskaya")
* [布萊娜克拉](https://en.wikipedia.org/wiki/Bryna_Kra "布萊娜克拉")
* [愛德華諾頓洛倫茲](https://en.wikipedia.org/wiki/Edward_Norton_Lorenz "愛德華諾頓洛倫茲")
* [亞歷山大·李亞普諾夫](https://en.wikipedia.org/wiki/Aleksandr_Lyapunov "亞歷山大·李亞普諾夫")
* [Beno?tMandelbrot](https://en.wikipedia.org/wiki/Benoit_Mandelbrot "Benoit Mandelbrot")
* [嘿哦](https://en.wikipedia.org/wiki/Hee_Oh "嘿哦")
* [愛德華奧特](https://en.wikipedia.org/wiki/Edward_Ott "愛德華奧特")
* [亨利龐加萊](https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 "亨利龐加萊")
* [瑪麗里斯](https://en.wikipedia.org/wiki/Mary_Rees "瑪麗里斯")
* [奧托羅斯勒](https://en.wikipedia.org/wiki/Otto_R%C3%B6ssler "奧托羅斯勒")
* [大衛魯勒](https://en.wikipedia.org/wiki/David_Ruelle "大衛魯勒")
* [卡羅琳系列](https://en.wikipedia.org/wiki/Caroline_Series "卡羅琳系列")
* [Oleksandr Mykolayovych Sharkovsky](https://en.wikipedia.org/wiki/Oleksandr_Mykolayovych_Sharkovsky "Oleksandr Mykolayovych Sharkovsky")
* [妮娜斯奈斯](https://en.wikipedia.org/wiki/Nina_Snaith "妮娜斯奈斯")
* [Floris Takens](https://en.wikipedia.org/wiki/Floris_Takens "Floris Takens")
* [奧黛麗特拉斯](https://en.wikipedia.org/wiki/Audrey_Terras "奧黛麗特拉斯")
* [瑪麗Tsingou](https://en.wikipedia.org/wiki/Mary_Tsingou "瑪麗Tsingou")
* [艾米威爾金森](https://en.wikipedia.org/wiki/Amie_Wilkinson "艾米威爾金森")
* [詹姆斯A.約克](https://en.wikipedia.org/wiki/James_A._Yorke "詹姆斯A.約克")
* [賴生生](https://en.wikipedia.org/wiki/Lai-Sang_Young "賴生生")
|
- 啥叫DynamicalBilliards動態粒子(動力臺球)
- 五大系統-為啥搞那么復雜?
- 內存數據庫triangleBilliard19Redis參數190101
- HiRedis在C++Windows下配置編譯使用190101
- 三大視圖:inputOrigin_計算系統(無理數非視圖)_3輸出視圖190110
- MGDs-Mp系統:數學生成數據(或數據生成)系統-參數修改模塊190102
- MGDs的安裝攻略190110
- redis+MGDs-Mp系統完整代碼之-代碼塊1-測試Redis連接190110
- c++中longdouble_longlong等能計算的最大、最小值190101
- 充分解耦的MGDs-充分松耦合的數學生成數據系統190111
- MGDs-數據生成系統的(部分)核心代碼190114
- mfc190115