<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                ``` // c++22最完整反向傳播神經網絡梯度下降230801.cpp : 此文件包含 "main" 函數。程序執行將在此處開始并結束。 #include <iostream> #include <vector> //#include <cmath> //#include <ctime> //#include <cstdlib> class NeuralNetwork { private: std::vector<std::vector<float>> inputWeights; std::vector<float> inputBiases; std::vector<std::vector<float>> hiddenWeights; std::vector<float> hiddenBiases; std::vector<float> hiddenLayer; std::vector<float> outputLayerOut輸出層; float learningRate = 0.01; float sigmoid(float x) { return 1.0 / (1.0 + std::exp(-x)); } float sigmoid激活_導函數derivative(float x) { return x * (1.0 - x); } float mse_loss(const std::vector<float>& targets, const std::vector<float>& outputs) { float totalError = 0.0; for (size_t i = 0; i < targets.size(); i++) { totalError += (targets[i] - outputs[i]) * (targets[i] - outputs[i]); } return totalError / targets.size(); } public: NeuralNetwork() { srand((unsigned int)time(0)); inputWeights.resize(4, std::vector<float>(3)); inputBiases.resize(4); hiddenWeights.resize(2, std::vector<float>(4)); hiddenBiases.resize(2); for (int i = 0; i < 4; i++) { inputBiases[i] = (rand() % 1000 - 500) / 1000.0; for (int j = 0; j < 3; j++) { inputWeights[i][j] = (rand() % 1000 - 500) / 1000.0; } } for (int i = 0; i < 2; i++) { hiddenBiases[i] = (rand() % 1000 - 500) / 1000.0; for (int j = 0; j < 4; j++) { hiddenWeights[i][j] = (rand() % 1000 - 500) / 1000.0; } } } std::vector<float> predict(const std::vector<float>& input) { //ForaWard hiddenLayer.resize(4); outputLayerOut輸出層.resize(2); for (int i = 0; i < 4; i++) { hiddenLayer[i] = inputBiases[i]; for (int j = 0; j < 3; j++) { hiddenLayer[i] += input[j] * inputWeights[i][j]; } hiddenLayer[i] = sigmoid(hiddenLayer[i]); } for (int i = 0; i < 2; i++) { outputLayerOut輸出層[i] = hiddenBiases[i]; for (int j = 0; j < 4; j++) { outputLayerOut輸出層[i] += hiddenLayer[j] * hiddenWeights[i][j]; } outputLayerOut輸出層[i] = sigmoid(outputLayerOut輸出層[i]); } return outputLayerOut輸出層; } float train(const std::vector<float>& input, const std::vector<float>& target) { predict(input); std::vector<float> outputError損失float值s(2); for (int i = 0; i < 2; i++) { outputError損失float值s[i] = target[i] - outputLayerOut輸出層[i]; } std::vector<float> hiddenErrors(4, 0); for (int i = 0; i < 4; i++) { for (int j = 0; j < 2; j++) { hiddenErrors[i] += outputError損失float值s[j] * hiddenWeights[j][i]; } } for (int i = 0; i < 2; i++) { for (int j = 0; j < 4; j++) { hiddenWeights[i][j] += learningRate * outputError損失float值s[i] * sigmoid激活_導函數derivative(outputLayerOut輸出層[i]) * hiddenLayer[j]; } hiddenBiases[i] += learningRate * outputError損失float值s[i] * sigmoid激活_導函數derivative(outputLayerOut輸出層[i]); } for (int i = 0; i < 4; i++) { for (int j = 0; j < 3; j++) { inputWeights[i][j] += learningRate * hiddenErrors[i] * sigmoid激活_導函數derivative(hiddenLayer[i]) * input[j]; } inputBiases[i] += learningRate * hiddenErrors[i] * sigmoid激活_導函數derivative(hiddenLayer[i]); } return mse_loss(target, outputLayerOut輸出層); } }; int main() { NeuralNetwork nn; // 示例數據 std::vector<float> input = { 0.5, 0.6, 0.7 }; std::vector<float> target = { 0.1, 0.9 }; // 訓練 for (int i = 0; i < 10000; i++) { float loss = nn.train(input, target); if (i % 1000 == 0) { std::cout << "Iteration " << i << ", Loss: " << loss << std::endl; } } // 預測 std::vector<float> prediction = nn.predict(input); std::cout << "Predictions: " << prediction[0] << ", " << prediction[1] << std::endl; return 0; }//main ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看