<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                **安裝** Prometheus在容器內運行的話,數據不能持久 Node-exporter在容器里面收集物理節點數據的話,數據會不準確。 所以我們采用federation的方式。就是容器里面運行一個prometheus server采集容器里面的數據,外部再運行一個prometheus server采集物理節點的數據+容器內prometheus采集到的數據。 ![pastedGraphic.png](blob:http://www.hmoore.net/8254d902-7513-43b0-941d-74c6bfa174fd) 容器內部安裝就不介紹了,只介紹外部 安裝包在prometheus.io里面找 node-exporter Prometheus Alertmanager **安裝****node-exporter** 在每個需要監控的節點上安裝node-exporter放在/usr/local下 \# tar -xf node\_exporter-0.16.0.linux-amd64.tar.gz \# cd node-exporter \# ./node\_exporter & **安裝****prometheus** \# tar -xf prometheus-2.4.2.linux-amd64.tar.gz \# cd prometheus 加入job收集外部采集的數據,federation采集內部prometheus的數據 \# vim prometheus.yml global: scrape\_interval: 15s 15秒采集一次 evaluation\_interval: 15s 15秒評估一次規則 alerting: alertmanagers: \- static\_configs: \- targets: \["localhost:9093"\] rule\_files: \- "rule/\*.yml" 報警規則文件 scrape\_configs: \- job\_name: 'prometheus' static\_configs: \- targets: \['localhost:9090'\] \- job\_name: 'node-exporter' static\_configs: \- targets: \['192.168.11.212:9100', '192.168.11.213:9100', '192.168.11.214:9100', '192.168.11.215:9100', '192.168.11.216:9100'\] \- job\_name: 'federate' scrape\_interval: 15s honor\_labels: true metrics\_path: '/federate' params: 'match\[\]': \- '{job=~"kubernetes.\*"}' static\_configs: \- targets: \- 'prometheus.pkbeta.com' **安裝****alertmanger** \# tar -xf alertmanager-0.15.2.linux-amd64.tar.gz \# cd alertmanager \# vim alertmanager.yml global: resolve\_timeout: 5m smtp\_smarthost: 'smtp.163.com:25' 我用的是163郵箱 smtp\_from: 'XXXXX@163.com' smtp\_auth\_username: 'XXXXX@163.com' smtp\_auth\_password: 'XXXXX' smtp\_require\_tls: false route: group\_by: \['NODE'\] group\_wait: 10s 報警等待時間 group\_interval: 10s 報警間隔時間 repeat\_interval: 1h 重復發送時間 receiver: 'node' receivers: \- name: 'node' email\_configs: \- to: 'XXXXX@163.com' inhibit\_rules: \- source\_match: severity: 'critical' target\_match: severity: 'warning' equal: \['alertname', 'dev', 'instance'\] 啟動alertmanager \# ./alertmanager & **編寫****prometheus****的報警規則** \# cd prometheus/rule \# vim test.yml groups: \- name: NODE 組的名字 rules: \- alert: NodeCPUUsage 75% 報警名 expr: (100 - (avg by (instance) (irate(node\_cpu\_seconds\_total{mode="idle"}\[5m\])) \* 100)) > 75 報警的規則 for: 1m 達到閾值1分鐘就報警 labels: severity: page annotations: 以下就是報警收到的信息 summary: "{{$labels.instance}}: High CPU usage detected" description: "{{$labels.instance}}: CPU usage is above 75% (current value is: {{ $value }})" 啟動prometheus \# ./prometheus 瀏覽器訪問prometheus 默認端口9090 ![pastedGraphic_1.png](blob:http://www.hmoore.net/d48377de-b88a-46b1-8fa7-46900dc68c64) ![pastedGraphic_2.png](blob:http://www.hmoore.net/d3cb2b60-3ca6-475c-ad82-1a5e0dc909d3) ![pastedGraphic_3.png](blob:http://www.hmoore.net/e86ad604-9c80-40c7-a9fd-ca3431076f02)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看