# 全文檢索
* 全文檢索不同于特定字段的模糊查詢,使用全文檢索的效率更高,并且能夠對于中文進行分詞處理
* haystack:django的一個包,可以方便地對model里面的內容進行索引、搜索,設計為支持whoosh,solr,Xapian,Elasticsearc四種全文檢索引擎后端,屬于一種全文檢索的框架
* whoosh:純Python編寫的全文搜索引擎,雖然性能比不上sphinx、xapian、Elasticsearc等
* jieba:一款免費的中文分詞包
## 操作
### 1.安裝所需包
```text
pip install django-haystack
pip install whoosh
pip install jieba
```
### 2.修改settings.py文件
* 添加應用
```text
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'myapp',
'tinymce',
'haystack',
]
```
* 添加搜索引擎
```text
# 添加搜索引擎
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine',
'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
}
}
#自動生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
```
### 3.在項目的urls.py中添加url
```text
urlpatterns = [
....
url(r'^search/$',include('haystack.urls')),
]
```
#### 4.在應用目錄myapp下獎勵search\_indexes.py文件
```text
from haystack import indexes
from .models import Grades
class GradesIndex(indexes.SearchIndex,indexes.Indexable):
text = indexes.CharField(document=True,use_template=True)
def get_model(self):
return Grades
def index_queryset(self, using=None):
return self.get_model().objects.all()
```
### 5.在目錄“templates/search/indexes/應用名稱”下創建"模型類名稱\_text"文件
```text
# grades_text.txt,列出要對那些內容進行檢索
{{object.gname}}
{{object.gdate}}
```
### 6.在目錄"templates/search"下創建search.html
```text
<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
{% if query %}
<h3>搜索結果如下:</h3>
{% for result in page.object_list %}
<a href="/{{ result.object.id }}/">{{ result.object.sname }}</a><br/>
{% empty %}
<p>啥也沒找到</p>
{% endfor %}
{% if page.has_previous or page.has_next %}
<div>
{% if page.has_previous %}<a href="?q={{ query }}&page={{ page.previous_page_number }}">{% endif %}« 上一頁{% if page.has_previous %}</a>{% endif %}
|
{% if page.has_next %}<a href="?q={{ query }}&page={{ page.next_page_number }}">{% endif %}下一頁 »{% if page.has_next %}</a>{% endif %}
</div>
{% endif %}
{% endif %}
</body>
</html>
```
### 7.建立ChineseAnalyzer.py文件
* 在python路徑里,保存在haystack的安裝文件夾下,路徑如:"/lib/site-packages/haystack/backends"
```text
import jieba
from whoosh.analysis import Tokenizer, Token
class ChineseTokenizer(Tokenizer):
def __call__(self, value, positions=False, chars=False,
keeporiginal=False, removestops=True,
start_pos=0, start_char=0, mode='', **kwargs):
t = Token(positions, chars, removestops=removestops, mode=mode,
**kwargs)
seglist = jieba.cut(value, cut_all=True)
for w in seglist:
t.original = t.text = w
t.boost = 1.0
if positions:
t.pos = start_pos + value.find(w)
if chars:
t.startchar = start_char + value.find(w)
t.endchar = start_char + value.find(w) + len(w)
yield t
def ChineseAnalyzer():
return ChineseTokenizer()
```
### 8.復制whoosh\_backend.py文件,改名為whoosh\_cn\_backend.py {#8復制whooshbackendpy文件,改名為whooshcnbackendpy}
* 注意:復制出來的文件名,末尾會有一個空格,記得要刪除這個空格
```text
from .ChineseAnalyzer import ChineseAnalyzer
查找
analyzer=StemmingAnalyzer()
改為
analyzer=ChineseAnalyzer()
```
### 9.生成索引 {#9生成索引}
* 初始化索引數據
```text
python manage.py rebuild_index
```
### 10.在模板中創建搜索欄 {#10在模板中創建搜索欄}
```text
<form method='get' action="/search/" target="_blank">
<input type="text" name="q">
<input type="submit" value="查詢">
</form>
```