<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                ## NumPy ### 創建多維 * 矩陣 數組 向量 * 1 創建數組 * 一維二維數組 * 查看形狀 * 元素個數 * 元素類型 * 數組維度 * 最大最小值 ``` import numpy as np # 一維數組 a1 = np.array([1, 2, 3, 4]) # 多維數組各個維度的大小,返回一個元組 a1.shape # 數組里面元素個數 a1.size # 數組中數據類型 a1.dtype # 二維數組 a2 = np.array([[1.0, 2.5, 3], [0.5, 4, 9]]) a2.shape,a2.size,a2.dtype a2.min() a1 a2 # 數組類型為ndarray type(a1) ``` * 2 創建數組 * 指定值范圍 * 值全為1 * 值全為0 * 值全無意義 * 值全為1三維 ``` # 元素值為0-3數組 a1 = np.arange(4) a1 # 查看維數 a1.ndim # 元素值全為1 4x4數組 a2 = np.ones((4, 4), dtype=np.int64) a2 a2.dtype a2.ndim a2.shape # 元素值全為0 2x2數組 a3 = np.zeros((2, 2)) a3 a3.dtype a3.ndim a4 = np.empty((3, 3), dtype=np.int64) a4 a4.dtype a4.shape a4.ndim a5 = np.ones((4, 3, 4)) a5 a5.ndim ``` * 3 改變數組現狀 ``` a = np.arange(12) a a.reshape(4, 3) ``` ### 多維數組索引 * 4 列表切片 ``` l = [1, 2, 3, 4, 5] l[:2] l[2:4] l[1:5:2] ``` * 5 數組切片 ``` a = np.arange(12) a a[1:4] a[1:10:2] ``` * 6 數組的值修改 ``` a = np.arange(12) a a[1:5] = -1 a a[1:10:2] = 1 a ``` * 7 數組 * 二維數組 * 查看數組行 * 查看數組列 * 修改行列固定位置值 ``` a = np.arange(12).reshape(3, 4) a.shape a a[0] a[1] a[:, 0] a[:, 1] a[:, 2] a[0, 0] a[0, 1] a[1, 1] a[1, 2] a[0] = 1 a a[:, 1] = -1 a ``` * 8 多維數組降維 * 三維抽取出二維 * 查看形狀 維度 值 列 行 賦值 ``` a = np.arange(27).reshape(3, 3, 3) a.ndim a.shape a a1 = a[1] a1 a1.shape a2 = a[1, 1] a2 a2.shape a2.ndim a[2, 2, 2] a[:, 1] a[:, 1] = 1 a ``` #### 多維數組運算 * 9 矩陣運算 * 所有元素全部加 * 所有元素全部乘 ``` a = np.arange(12).reshape(3, 4) a a += 1 a a *= 2 a ``` * 10 兩個數組運算 * `+` `-` 乘法 內積 ``` a = np.arange(4).reshape(2, 2) b = np.arange(4, 8).reshape(2, 2) a b b - a a + b a * b a.dot(b) ``` * 11 邏輯比較運算 * 挑選出矩陣中邏輯運算為true的值 ``` a = np.arange(12).reshape(4, 3) b = a > 5 b a[b] ``` * 12 數組元素求和 * 數組求和 * 數組列求和 * 數組行求和 ``` a a.sum() a.sum(axis=0) a.sum(axis=1) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看