<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # FFT卷積的速度比較 相關文檔: [_頻域信號處理_](frequency_process.html) 直接卷積的復雜度為O(N*N),FFT的復雜度為O(N*log(N)),此程序分別計算直接卷積和快速卷積的耗時曲線。請注意Y軸為每點的平均運算時間。 ![](https://box.kancloud.cn/2016-03-19_56ed1bb5a73d7.png) ``` # -*- coding: utf-8 -*- import numpy as np import timeit def fft_convolve(a,b): n = len(a)+len(b)-1 N = 2**(int(np.log2(n))+1) A = np.fft.fft(a, N) B = np.fft.fft(b, N) return np.fft.ifft(A*B)[:n] if __name__ == "__main__": from pylab import * n_list = [] t1_list = [] t2_list = [] for n in xrange(4, 14): N = 2**n count = 10000**2 / N**2 if count > 10000: count = 10000 setup = """ import numpy as np from __main__ import fft_convolve a = np.random.rand(%s) b = np.random.rand(%s) """ % (N, N) t1 = timeit.timeit("np.convolve(a,b)", setup, number=count) t2 = timeit.timeit("fft_convolve(a,b)", setup, number=count) t1_list.append(t1*1000/count/N) t2_list.append(t2*1000/count/N) n_list.append(N) figure(figsize=(8,4)) plot(n_list, t1_list, label=u"直接卷積") plot(n_list, t2_list, label=u"FFT卷積") legend() title(u"卷積的計算時間") ylabel(u"計算時間(ms/point)") xlabel(u"長度") xlim(min(n_list),max(n_list)) show() ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看