<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                Pandas具有功能全面的高性能內存中連接操作,與SQL等關系數據庫非常相似。 Pandas提供了一個單獨的merge()函數,作為DataFrame對象之間所有標準數據庫連接操作的入口 -pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True) Python在這里,有以下幾個參數可以使用 - left - 一個DataFrame對象。 right - 另一個DataFrame對象。 on - 列(名稱)連接,必須在左和右DataFrame對象中存在(找到)。 left_on - 左側DataFrame中的列用作鍵,可以是列名或長度等于DataFrame長度的數組。 right_on - 來自右的DataFrame的列作為鍵,可以是列名或長度等于DataFrame長度的數組。 left_index - 如果為True,則使用左側DataFrame中的索引(行標簽)作為其連接鍵。 在具有MultiIndex(分層)的DataFrame的情況下,級別的數量必須與來自右DataFrame的連接鍵的數量相匹配。 right_index - 與右DataFrame的left_index具有相同的用法。 how - 它是left, right, outer以及inner之中的一個,默認為內inner。 下面將介紹每種方法的用法。 sort - 按照字典順序通過連接鍵對結果DataFrame進行排序。默認為True,設置為False時,在很多情況下大大提高性能。現在創建兩個不同的DataFrame并對其執行合并操作。 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) print (left) print("========================================") print (right) ``` Python執行上面示例代碼,得到以下結果 ``` Name id subject_id 0 Alex 1 sub1 1 Amy 2 sub2 2 Allen 3 sub4 3 Alice 4 sub6 4 Ayoung 5 sub5 ======================================== Name id subject_id 0 Billy 1 sub2 1 Brian 2 sub4 2 Bran 3 sub3 3 Bryce 4 sub6 4 Betty 5 sub5 ``` Shell在一個鍵上合并兩個數據幀 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on='id') print(rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id subject_id_x Name_y subject_id_y 0 Alex 1 sub1 Billy sub2 1 Amy 2 sub2 Brian sub4 2 Allen 3 sub4 Bran sub3 3 Alice 4 sub6 Bryce sub6 4 Ayoung 5 sub5 Betty sub5 ``` Shell合并多個鍵上的兩個數據框 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left,right,on=['id','subject_id']) print(rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id subject_id Name_y 0 Alice 4 sub6 Bryce 1 Ayoung 5 sub5 Betty ``` Shell合并使用“how”的參數如何合并參數指定如何確定哪些鍵將被包含在結果表中。如果組合鍵沒有出現在左側或右側表中,則連接表中的值將為NA。 這里是how選項和SQL等效名稱的總結 合并方法 SQL等效 描述 left LEFT OUTER JOIN 使用左側對象的鍵 right RIGHT OUTER JOIN 使用右側對象的鍵 outer FULL OUTER JOIN 使用鍵的聯合 inner INNER JOIN 使用鍵的交集Left Join示例 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='left') print (rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id_x subject_id Name_y id_y 0 Alex 1 sub1 NaN NaN 1 Amy 2 sub2 Billy 1.0 2 Allen 3 sub4 Brian 2.0 3 Alice 4 sub6 Bryce 4.0 4 Ayoung 5 sub5 Betty 5.0 ``` ShellRight Join示例 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='right') print (rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id_x subject_id Name_y id_y 0 Amy 2.0 sub2 Billy 1 1 Allen 3.0 sub4 Brian 2 2 Alice 4.0 sub6 Bryce 4 3 Ayoung 5.0 sub5 Betty 5 4 NaN NaN sub3 Bran 3 ``` ShellOuter Join示例 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, how='outer', on='subject_id') print (rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id_x subject_id Name_y id_y 0 Alex 1.0 sub1 NaN NaN 1 Amy 2.0 sub2 Billy 1.0 2 Allen 3.0 sub4 Brian 2.0 3 Alice 4.0 sub6 Bryce 4.0 4 Ayoung 5.0 sub5 Betty 5.0 5 NaN NaN sub3 Bran 3.0 ``` ShellInner Join示例連接將在索引上進行。連接(Join)操作將授予它所調用的對象。所以,a.join(b)不等于b.join(a)。 ``` import pandas as pd left = pd.DataFrame({ 'id':[1,2,3,4,5], 'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'], 'subject_id':['sub1','sub2','sub4','sub6','sub5']}) right = pd.DataFrame( {'id':[1,2,3,4,5], 'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'], 'subject_id':['sub2','sub4','sub3','sub6','sub5']}) rs = pd.merge(left, right, on='subject_id', how='inner') print (rs) ``` Python執行上面示例代碼,得到以下結果 - ``` Name_x id_x subject_id Name_y id_y 0 Amy 2 sub2 Billy 1 1 Allen 3 sub4 Brian 2 2 Alice 4 sub6 Bryce 4 3 Ayoung 5 sub5 Betty 5 ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看