<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                ```py # 1. Directly Load a Pre-trained Model # https://github.com/pytorch/vision/tree/master/torchvision/models import torchvision.models as models resnet50 = models.resnet50(pretrained=True) # or model = models.resnet50(pretrained=False) # Maybe you want to modify the last fc layer? resnet.fc = nn.Linear(2048, 2) # 2. Load part of parameters of a pretrained model as init for self-defined similar-architecture model. # resnet50 is a pretrain model # self_defined indicates model you just define. resnet50 = models.resnet50(pretrained=True) self_defined = ... pretrained_dict = resnet50.state_dict() model_dict = self_defined.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # update & load model_dict.update(pretrained_dict) model.load_state_dict(model_dict) # 3. Save & Load routines. # routine # (recommended) saves and loads only the model parameters torch.save(model.state_dict(), PATH) model.load_state_dict(torch.load(PATH)) # routine 2 # saves and loads the entire model torch.save(model, PATH) model = torch.load(PATH) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看