遞歸函數效率低, 常使用相應的迭代算法.
mid, left, right均為元素下標, 如果當前表不為空, 則令x與l[mid]比較. 若兩者相等, 則搜索成功. 若前者小于后者, 則繼續查找左半部分, 否則查找右半部分. 下標范圍分別為[left, mid - 1], [mid + 1, right]. 如果當前搜索表為空表, 搜索失敗返回NotPresent.
實現代碼:
~~~
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "assert.h"
using namespace std;
const int MAXN = 9999;
enum ResultCode
{
Underflow, Overflow, Success, Duplicate, NotPresent
};
template <class T>
class DynamicSet
{
public:
virtual ResultCode Search(T &x) const = 0; // 表中搜索與x關鍵字相同的元素, 若存在則賦值給x并且返回Success, 否則返回NotPresent
virtual ResultCode Insert(T &x) = 0; // 表中搜索與x關鍵字相同的元素, 若存在該元素, 賦值給x返回Duplicate, 若表已滿返回Overflow, 若表未滿返回Success
virtual ResultCode Remove(T &x) = 0; // 表中搜索與x關鍵字相同的元素, 若存在該元素, 賦值給x返回Success, 否則返回NotPresent
virtual bool IsEmpty() const = 0; // 集合為空返回true
virtual bool IsFull() const = 0; // 集合為滿返回true
/* data */
};
template <class T>
class ListSet: public DynamicSet<T>
{
public:
ListSet( int mSize );
~ListSet() { delete []l; }
bool IsEmpty() const { return n == 0; }
bool IsFull() const { return n == maxSize; }
ResultCode Search(T &x) const;
ResultCode Insert(T &x);
ResultCode Remove(T &x);
void Print();
private:
T *l;
int maxSize, n;
/* data */
};
template <class T>
void ListSet<T>::Print()
{
for(int i = 0; i < n; ++i)
cout << l[i] << "\t";
cout << endl;
}
template <class T>
ListSet<T>::ListSet(int mSize)
{
maxSize = mSize;
l = new T[maxSize];
n = 0;
}
template <class T>
ResultCode ListSet<T>::Insert(T &x)
{
assert(!IsFull());
l[n++] = x;
l[n] = MAXN;
return Success;
}
template <class T>
ResultCode ListSet<T>::Remove(T &x)
{
}
template <class T>
ResultCode ListSet<T>::Search(T &x) const
{
int mid, left = 0, right = n -1;
while(left <= right) {
mid = (left + right) / 2;
if(x < l[mid]) right = mid - 1;
else if(x > l[mid]) left = mid + 1;
else {
x = l[mid];
return Success;
}
}
return NotPresent;
}
int main(int argc, char const *argv[])
{
ListSet<int> ls(20);
int x = 21; ls.Insert(x);
x = 30; ls.Insert(x);
x = 36; ls.Insert(x);
x = 41; ls.Insert(x);
x = 52; ls.Insert(x);
x = 54; ls.Insert(x);
x = 66; ls.Insert(x);
x = 72; ls.Insert(x);
x = 83; ls.Insert(x);
x = 97; ls.Insert(x);
ls.Print();
x = 35;
if(ls.Search(x) == Success) cout << "Found " << x << endl;
else cout << "Not Found " << x << endl;
return 0;
}
~~~
- 前言
- 線性表的順序表示:順序表ADT_SeqList
- 結點類和單鏈表ADT_SingleList
- 帶表頭結點的單鏈表ADT_HeaderList
- 堆棧的順序表示ADT_SeqStack
- 循環隊列ADT_SeqQueue
- 一維數組ADT_Array1D
- 稀疏矩陣ADT_SeqTriple
- 數據結構實驗1(順序表逆置以及刪除)
- 數據結構實驗1(一元多項式的相加和相乘)
- 二叉樹ADT_BinaryTree
- 優先隊列ADT_PrioQueue
- 堆ADT_Heap
- 數據結構實驗2(設計哈弗曼編碼和譯碼系統)
- ListSet_無序表搜索
- ListSet_有序表搜索
- ListSet_對半搜索的遞歸算法
- ListSet_對半搜索的迭代算法
- 二叉搜索樹ADT_BSTree
- 散列表ADT_HashTable
- 圖的鄰接矩陣實現_MGraph
- 圖的鄰接表實現_LGraph
- 數據結構實驗2(二叉鏈表實現二叉樹的基本運算)
- 數據結構實驗3(圖的DFS和BFS實現)
- 數據結構實驗3(飛機最少環城次數問題)
- 拓撲排序的實現_TopoSort
- 數據結構實驗4(排序算法的實現及性能分析)