鄰接矩陣有兩種, 不帶權圖和網的鄰接矩陣. 不帶權圖的鄰接矩陣元素為0或1, 網的鄰接矩陣中包含0, INF, 和邊上的權值, 權值類型T可為整型, 實型. 三元組(u, v, w)代表一條邊, u, v是邊的兩個定點, w表示u v的關系:?
a[u][u] = 0, 兩種鄰接矩陣的主對角元素都是0. a[u][v] = w, 若<u, v> 在E中, 則w = 1(不帶權圖)或w = w(i, j)(網). 若<u, v>不在E中,?
則w = noEdge, noEdge = 0(不帶權圖)或noEdge = INF(網).
保護數據成員T **a指向動態生成的二維數組, 用來存儲鄰接矩陣.
包含的函數Exist(): 若輸入參數u, v無效或a[u][v] == noEdge, 則不存在邊<u, v>, 返回false, 否則返回true.
函數Insert(): 若輸入參數u, v無效返回Failure. 若a[u][v] != noEdge, 表示邊<u, v>已經存在, 函數返回Duplicate. 否則添加邊<u, v>, 返回Success, 具體做法: a[u][v] = w, e++.
函數Remove(): 若輸入參數u, v無效, 不能執行刪除運算, 返回Failure. 若a[u][v] == noEdge, 表示圖中不存在邊<u, v>, 函數返回Notpresent. 否則從鄰接矩陣中刪除邊<u, v>, 返回Success, 具體做法: a[u][v] = noEdge, e--.
實現代碼:
~~~
#include "iostream"
#include "cstdio"
#include "cstring"
#include "algorithm"
#include "queue"
#include "stack"
#include "cmath"
#include "utility"
#include "map"
#include "set"
#include "vector"
#include "list"
#include "string"
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
enum ResultCode { Underflow, Overflow, Success, Duplicate, NotPresent, Failure };
template <class T>
class Graph
{
public:
virtual ~Graph() {};
virtual ResultCode Insert(int u, int v, T &w) = 0;
virtual ResultCode Remove(int u, int v) = 0;
virtual bool Exist(int u, int v) const = 0;
/* data */
};
template <class T>
class MGraph: public Graph<T>
{
public:
MGraph(int mSize, const T& noedg);
~MGraph();
ResultCode Insert(int u, int v, T &w);
ResultCode Remove(int u, int v);
bool Exist(int u, int v) const;
int Vertices() const { return n; }
void Output();
protected:
T **a;
T noEdge;
int n, e;
/* data */
};
template <class T>
void MGraph<T>::Output()
{
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j)
if(a[i][j] == noEdge) cout << "NE\t";
else cout << a[i][j] << "\t";
cout << endl;
}
cout << endl << endl << endl;
}
template <class T>
MGraph<T>::MGraph(int mSize, const T &noedg)
{
n = mSize, e = 0, noEdge = noedg;
a = new T *[n];
for(int i = 0; i < n; ++i) {
a[i] = new T[n];
for(int j = 0; j < n; ++j)
a[i][j] = noEdge;
a[i][i] = 0;
}
}
template <class T>
MGraph<T>::~MGraph()
{
for(int i = 0; i < n; ++i)
delete []a[i];
delete []a;
}
template <class T>
bool MGraph<T>::Exist(int u, int v) const
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v || a[u][v] == noEdge) return false;
return true;
}
template <class T>
ResultCode MGraph<T>::Insert(int u, int v, T &w)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
if(a[u][v] != noEdge) return Duplicate;
a[u][v] = w;
e++;
return Success;
}
template <class T>
ResultCode MGraph<T>::Remove(int u, int v)
{
if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure;
if(a[u][v] == noEdge) return NotPresent;
a[u][v] = noEdge;
e--;
return Success;
}
int main(int argc, char const *argv[])
{
MGraph<int> mg(4, 99);
int w = 4; mg.Insert(1, 0, w); mg.Output();
w = 5; mg.Insert(1, 2, w); mg.Output();
w = 3; mg.Insert(2, 3, w); mg.Output();
w = 1; mg.Insert(3, 0, w); mg.Output();
w = 1; mg.Insert(3, 1, w); mg.Output();
return 0;
}
~~~
- 前言
- 線性表的順序表示:順序表ADT_SeqList
- 結點類和單鏈表ADT_SingleList
- 帶表頭結點的單鏈表ADT_HeaderList
- 堆棧的順序表示ADT_SeqStack
- 循環隊列ADT_SeqQueue
- 一維數組ADT_Array1D
- 稀疏矩陣ADT_SeqTriple
- 數據結構實驗1(順序表逆置以及刪除)
- 數據結構實驗1(一元多項式的相加和相乘)
- 二叉樹ADT_BinaryTree
- 優先隊列ADT_PrioQueue
- 堆ADT_Heap
- 數據結構實驗2(設計哈弗曼編碼和譯碼系統)
- ListSet_無序表搜索
- ListSet_有序表搜索
- ListSet_對半搜索的遞歸算法
- ListSet_對半搜索的迭代算法
- 二叉搜索樹ADT_BSTree
- 散列表ADT_HashTable
- 圖的鄰接矩陣實現_MGraph
- 圖的鄰接表實現_LGraph
- 數據結構實驗2(二叉鏈表實現二叉樹的基本運算)
- 數據結構實驗3(圖的DFS和BFS實現)
- 數據結構實驗3(飛機最少環城次數問題)
- 拓撲排序的實現_TopoSort
- 數據結構實驗4(排序算法的實現及性能分析)