<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                # Java線程(十一):Fork/Join-Java并行計算框架 并行計算在處處都有大數據的今天已經不是一個新鮮的詞匯了,現在已經有單機多核甚至多機集群并行計算,注意,這里說的是并行,而不是并發。嚴格的將,**并行是指系統內有多個任務同時執行**,而**并發是指系統內有多個任務同時存在**,不同的任務按時間分片的方式切換執行,由于切換的時間很短,給人的感覺好像是在同時執行。? Java在JDK7之后加入了并行計算的框架Fork/Join,可以解決我們系統中大數據計算的性能問題。Fork/Join采用的是分治法,Fork是將一個大任務拆分成若干個子任務,子任務分別去計算,而Join是獲取到子任務的計算結果,然后合并,這個是遞歸的過程。子任務被分配到不同的核上執行時,效率最高。偽代碼如下: ~~~ Result solve(Problem problem) { if (problem is small) directly solve problem else { split problem into independent parts fork new subtasks to solve each part join all subtasks compose result from subresults } } ~~~ Fork/Join框架的核心類是[ForkJoinPool](https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html),它能夠接收一個[ForkJoinTask](https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html),并得到計算結果。ForkJoinTask有兩個子類,[RecursiveTask](https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html)(有返回值)和[RecursiveAction](https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveAction.html)(無返回結果),我們自己定義任務時,只需選擇這兩個類繼承即可。類圖如下:? ![](https://box.kancloud.cn/2016-01-12_5694e16198f41.jpg)![](https://box.kancloud.cn/2016-01-12_5694e167336d2.jpg)? 下面來看一個實例:計算一個超大數組所有元素的和。代碼如下: ~~~ import java.util.Arrays; import java.util.Random; import java.util.concurrent.ExecutionException; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveTask; /** * @author: shuang.gao Date: 2015/7/14 Time: 8:16 */ public class SumTask extends RecursiveTask<Integer> { private static final long serialVersionUID = -6196480027075657316L; private static final int THRESHOLD = 500000; private long[] array; private int low; private int high; public SumTask(long[] array, int low, int high) { this.array = array; this.low = low; this.high = high; } @Override protected Integer compute() { int sum = 0; if (high - low <= THRESHOLD) { // 小于閾值則直接計算 for (int i = low; i < high; i++) { sum += array[i]; } } else { // 1\. 一個大任務分割成兩個子任務 int mid = (low + high) >>> 1; SumTask left = new SumTask(array, low, mid); SumTask right = new SumTask(array, mid + 1, high); // 2\. 分別計算 left.fork(); right.fork(); // 3\. 合并結果 sum = left.join() + right.join(); } return sum; } public static void main(String[] args) throws ExecutionException, InterruptedException { long[] array = genArray(1000000); System.out.println(Arrays.toString(array)); // 1\. 創建任務 SumTask sumTask = new SumTask(array, 0, array.length - 1); long begin = System.currentTimeMillis(); // 2\. 創建線程池 ForkJoinPool forkJoinPool = new ForkJoinPool(); // 3\. 提交任務到線程池 forkJoinPool.submit(sumTask); // 4\. 獲取結果 Integer result = sumTask.get(); long end = System.currentTimeMillis(); System.out.println(String.format("結果 %s 耗時 %sms", result, end - begin)); } private static long[] genArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = new Random().nextLong(); } return array; } } ~~~ 我們通過調整閾值(THRESHOLD),可以發現耗時是不一樣的。實際應用中,如果需要分割的任務大小是固定的,可以經過測試,得到最佳閾值;如果大小不是固定的,就需要設計一個可伸縮的算法,來動態計算出閾值。如果子任務很多,效率并不一定會高。? 未完待續。。。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看