<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                分類算法屬于<mark>監督式學習</mark>,根據已知標簽的樣本應用到分類模型中,能把數據庫中未知的類標簽數據進行歸類。 <br/> 分類在數據挖掘中是一項重要的任務,目前在商業上應用最多,常見的典型應用場景有流失預測、精確營銷、客戶獲取、個性偏好等。 <br/> MLlib 目前支持分類算法有:邏輯回歸、支持向量機(SVM)、樸素貝葉斯和決策樹。 <br/> **1. 支持向量機(SVM)** (1)數據`$SPARK_HOME/data/mllib/sample_libsvm_data.txt` ```txt 0 128:51 129:159 130:253 131:159 ... 1 159:124 160:253 161:255 162:63 ... ``` (2)代碼 ```scala import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.rdd.RDD object SVMAlgorithm { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf().setMaster("local[*]") .setAppName(this.getClass.getName) val sc: SparkContext = SparkContext.getOrCreate(conf) val data: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, "F:/mlib/sample_libsvm_data.txt") // 將數據隨機分成兩份,一份占60%,另一份占40% val splits: Array[RDD[LabeledPoint]] = data.randomSplit(Array(0.6, 0.4), seed = 11L) // 將60%數據作為訓練集 val training: RDD[LabeledPoint] = splits(0).cache() // 將40%數據作為測試集 val test: RDD[LabeledPoint] = splits(1) // 迭代次數為100次 val numIterations = 100 // 進行模型訓練 val model: SVMModel = SVMWithSGD.train(training, numIterations) // 可以選擇將模型保存 // 路徑會自動創建,如果路徑已經存在是會報錯的;路徑不能指定到文件,只能指定到目錄 // model.save(sc, "F:/mlib/model/svm") // 可以調用load加載模型 // val model:SVMModel = SVMModel.load(sc, "F:/mlib/model/svm") // 進行模型預測 val scoreAndLabels: RDD[Tuple2[Double, Double]] = test.map { point => val score: Double = model.predict(point.features) (score, point.label) } // 統計分類錯誤的樣本比例 val trainErr:Double = scoreAndLabels.filter(r => r._1 != r._2).count().toDouble / data.count() println(trainErr) // 0.01 } } ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看