<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                [TOC] <br > # **JDBC Connector** ***** <br > ## **安裝 JDBC Connector** 1. 在 [Confluent Hub](https://www.confluent.io/hub/confluentinc/kafka-connect-jdbc) 上下載 ZIP 文件。 2. 解壓縮 ZIP 文件并且將內容復制到你想要的目錄。例如,你可以創建一個名為`share/kafka/plugins/`目錄,并將 Connector 插件內容復制到該目錄下。 ```shell # mkdir -p /usr/local/share/kafka/plugins/ # unzip confluentinc-kafka-connect-jdbc-5.4.0.zip # chown -R kafka:oper /usr/local/share/kafka/ ``` 3. 將這個路徑添加到你的 Kafka Connect 屬性文件中,Kafka Connect 使用插件路徑查找插件,一個插件路徑是一個以逗號分隔的目錄列表。 ``` $ vim config/connect-distributed.properties plugin.path=/usr/local/share/kafka/plugins/confluentinc-kafka-connect-jdbc-5.4.0/lib ``` 4. 使用配置文件啟動 Connet Worker,Connect 將通過這些插件發現所有的連接器。 ```shell $ nohup bin/connect-distributed.sh config/connect-distributed.properties & ... ... [2020-01-19 15:09:33,463] INFO [Worker clientId=connect-1, groupId=connect-cluster] Starting connectors and tasks using config offset 35 (org.apache.kafka.connect.runtime.distributed.DistributedHerder:1000) [2020-01-19 15:09:33,463] INFO [Worker clientId=connect-1, groupId=connect-cluster] Finished starting connectors and tasks (org.apache.kafka.connect.runtime.distributed.DistributedHerder:1021) ``` 5. 在運行 Connect Worker 的每臺機器上重復這些步驟,以保證每個 Worker 上的連接器都已經被激活。 6. 驗證插件是否被成功加載。 ```shell $ curl http://localhost:8083/connector-plugins | jq [ { "class": "io.confluent.connect.jdbc.JdbcSinkConnector", "type": "sink", "version": "5.4.0" }, { "class": "io.confluent.connect.jdbc.JdbcSourceConnector", "type": "source", "version": "5.4.0" }, { "class": "org.apache.kafka.connect.file.FileStreamSinkConnector", "type": "sink", "version": "2.3.1" }, { "class": "org.apache.kafka.connect.file.FileStreamSourceConnector", "type": "source", "version": "2.3.1" } ] ``` > 你應該可以看到`JdbcSourceConnector`、`JdbcSinkConnector`兩個 Connector 插件 7. 列出所有活動的 Connector: ``` $ curl localhost:8083/connectors [] ``` <br > ## **安裝 JDBC 驅動程序** 1. 查找適合的 JDBC 4.0 的驅動 JAR 包。 * [JDBC drivers for Oracle](https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html) 2. 將這些 JAR 包移動到`share/java/kafka-connect-jdbc`目錄。 ```shell # mkdir -p /usr/local/share/java/kafka-connect-jdbc/ # chown -R lemon:oper /usr/local/share/java/kafka-connect-jdbc/ ``` 3. 設置環境變量: ``` $ export CLASSPATH=.:/usr/local/share/java/kafka-connect-jdbc/ojdbc8.jar ``` 4. 重啟 Connect Worker 節點。例如: ```shell $ jps -l 87537 org.apache.kafka.connect.cli.ConnectDistributed $ kill -9 87537 $ nohup bin/connect-distributed.sh config/connect-distributed.properties & ``` 5. 驗證插件是否被成功加載。 ```shell $ curl http://localhost:8083/connector-plugins | jq ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看