```java
/**
* 歸并排序所需的輔助數組。不將其聲明為方法內的局部變量,是為了避免重復創建數組
*/
private static Comparable[] mergeAux;
/**
* 歸并排序的合并方法
* <pre>
* 該方法先將所有元素復制到輔助數組中,再歸并回數組a中。
* 在歸并時進行了4個條件判斷:
* - 左半邊用盡(取右半邊的元素)
* - 右半邊用盡(取左半邊的元素)
* - 右半邊當前元素小于左半邊的當前元素(取右半邊的元素)
* - 右半邊當前元素大于等于左半邊的當前元素(取左半邊元素)
* </pre>
*
* @param <T>
* @param a
* @param low
* @param middle
* @param high
*/
private static <T extends Comparable>
void merge(T[] a, int low, int middle, int high) {
int i = low;
int j = middle + 1;
for (int k = low; k <= high; k++) {
mergeAux[k] = a[k];
}
for (int k = low; k <= high; k++) {
if (i > middle) {
a[k] = (T) mergeAux[j++];
} else if (j > high) {
a[k] = (T) mergeAux[i++];
} else if (less(mergeAux[j], mergeAux[i])) {
a[k] = (T) mergeAux[j++];
} else {
a[k] = (T) mergeAux[i++];
}
}
}
```
- 1 設計接口
- 1.1 容器接口Container
- 1.2 背包接口Bag
- 1.3 棧接口Stack
- 1.4 隊列接口Queue
- 1.5 Union-Find算法接口UF
- 2 實現接口
- 2.1 結點類Node
- 2.2 數組迭代器ArrayIterator
- 2.3 鏈表迭代器ListIterator
- 2.4 背包(Bag)的實現
- 2.4.1 能動態調整數組大小的Bag
- 2.4.2 鏈式Bag的實現
- 2.5 棧(Stack)的實現
- 2.5.1 能動態調整數組大小的Stack
- 2.5.2 鏈式Stack的實現
- 2.6 隊列(Queue)的實現
- 2.6.1 能動態調整數組大小的Queue
- 2.6.2 鏈式Queue的實現
- 2.7 Union-Find算法的實現
- 2.7.1 DefaultUF
- 2.7.2 QuickFindUF
- 2.7.3 QuickUnionUF
- 2.7.4 WeightedQuickUnionUF
- 2.8 測試
- 2.8.1 測試Stack
- 2.8.2 測試Union-Find
- 3 排序算法
- 3.1 定義排序工具的類結構
- 3.2 選擇排序
- 3.3 插入排序
- 3.4 希爾排序
- 3.5 歸并排序
- 3.5.1 歸并排序的合并方法
- 3.5.2 自頂向下的歸并排序
- 3.5.3 自底向上的歸并排序
- 3.6 快速排序
- 3.6.1 常規快速排序
- 3.6.2 排序前先洗牌
- 3.6.3 快速排序的改進方法-小數據量轉成插入排序
- 3.6.4 快速排序的改進方法-三向切分
- 3.7 堆排序
- 3.8 最終的排序工具
- 4 搜索
- 4.1 二分搜索(binarySearch)
- 4.2 優先隊列(MaxPriorityQueue)
- 4.3 二叉查找樹(BST)
- 4.4 紅黑二叉查找樹(RedBlackBST)
- 4.5 B-樹(BTree)
- 5 圖
- 5.1 無向圖(Graph)
- 5.2 有向圖(Digraph)
- 6 貪心
- Dijkstra算法-單元最短路徑
- 7 動態規劃
- 7.1 最長公共子序列問題
- 7.2 0-1背包問題
- 7.3 加工順序問題
- 8 搜索法
- 8.1 圖的著色問題
- 8.2 深度優先搜索
- 8.3 回溯法
- 8.3.1 回溯法的算法框架
- 8.3.2 子集樹
- 8.3.3 排列樹
- 8.3.4 滿m叉樹(組合樹)
- 8.4 廣度優先搜索
- 8.5 分支限界法
- 9 隨機化算法
- 9.1 數值隨機化算法
- 9.2 蒙特卡羅算法
- 9.3 拉斯維加斯算法
- 9.4 舍伍德算法
- 10 數論算法
- 10.1 Stein求最大公約數
- 10.2 矩陣求斐波那切數列
- LeetCode刷題筆記