#### 序
前言
#### 第1章 了解游戲數據分析
1.1 游戲數據分析的概念
1.2 游戲數據分析的意義
1.3 游戲數據分析的流程
1.3.1 方法論
1.3.2 數據加工
1.3.3 統計分析
1.3.4 提煉演繹
1.3.5 建議方案
1.4 游戲數據分析師的定位
1.4.1 玩家-游戲用戶
1.4.2 分析師
1.4.3 策劃-游戲設計者
#### 第2章 認識游戲數據指標
2.1 數據運營
2.2 數據收集
2.2.1 游戲運營數據
2.2.2 游戲反饋數據
2.2.3 收集方式
2.3 方法論
2.3.1 AARRR模型
2.3.2 PRAPA模型
2.4 數據指標
2.4.1 用戶獲取
2.4.2 用戶活躍
2.4.3 用戶留存
2.4.4 游戲收入
2.4.5 自傳播
#### 第3章 游戲數據報表制作
3.1 運營現狀
3.1.1 反饋指標
3.1.2 制作報表
3.2 趨勢判斷
3.2.1 關鍵要素
3.2.2 制作報表
3.3 衡量表現
3.3.1 關鍵數據
3.3.2 制作原則
3.4 產品問題
3.4.1 兩個問題
3.4.2 分析案例
3.5 一個問題、三個原則和圖表的意義
3.5.1 一個問題
3.5.2 三個原則
3.5.3 圖表的意義
#### 第4章 基于統計學的基礎分析方法
4.1 度量數據
4.1.1 統計描述
4.1.2 分布形狀類型及概率應用
4.1.3 常用統計圖
4.1.4 概率抽樣、樣本量估計和實驗設計
4.2 分類數據分析
4.2.1 列聯表分析
4.2.2 無序資料分析
4.2.3 有序分類資料分析
4.2.4 分類數據分析案例
4.3 定量數據分析
4.3.1 假設檢驗與t檢驗
4.3.2 方差分析與協方差分析
4.4 時間序列數據分析
4.4.1 時間序列及分解
4.4.2 時間序列描述統計
4.4.3 時間序列特性的分析
4.4.4 指數平滑
4.5 相關分析
4.5.1 定量資料相關分析
4.5.2 分類資料相關分析
參考文獻
#### 第5章 用戶分析
5.1 兩個問題
5.2 分析維度
5.3 新增用戶分析
5.3.1 黑色一分鐘
5.3.2 激活的用戶
5.3.3 分析案例-注冊轉化率
5.4 活躍用戶解讀
5.4.1 DAU的定義
5.4.2 DAU分析思路
5.4.3 DAU基本分析
5.4.4 分析案例-箱線圖分析DAU
5.5 綜合分析
5.5.1 分析案例-DNU/DAU
5.5.2 使用時長分析
5.6 斷代分析
5.7 LTV
5.7.1 LTV的定義
5.7.2 LTV算法局限性
5.7.3 用戶平均生命周期算法
5.7.4 LTV使用
#### 第6章 留存分析
6.1 留存率的概念
6.1.1 留存率的計算
6.1.2 留存率的三個階段
6.1.3 留存率的三要素
6.2 留存率的分析
6.2.1 留存率的三個普適原則
6.2.2 留存率分析的作用
6.2.3 留存率分析操作
6.3 留存率優化思路
6.4 留存率擴展討論
#### 第7章 收入分析
7.1 收入分析的兩個角度
7.1.1 市場推廣角度
7.1.2 產品運營角度
7.2 宏觀收入分析
7.3 付費轉化率
7.3.1 付費轉化率的概念
7.3.2 APA和DAU對付費轉化率的影響
7.3.3 真假APA
7.3.4 付費轉化率的引申
7.3.5 付費轉化率的影響因素
7.4 ARPU
7.4.1 ARPDAU
7.4.2 DAU 與 ARPU
7.5 ARPPU
7.5.1 ARPPU的由來
7.5.2 平均惹的禍
7.5.3 首次付費與ARPPU
7.6 APA
7.6.1 APA分析
7.6.2 付費用戶的劃分
7.6.3 付費頻次與收入規模
7.6.4 付費頻次與付費間隔
7.7 分析案例-新增用戶付費分析
7.7.1 新增用戶留存
7.7.2 付費轉化率
7.7.3 留存用戶中付費用戶的收入
7.7.4 ARPU
7.7.5 新增用戶的收入計算
#### 第8章 渠道分析
8.1 渠道的定義
8.2 渠道的分類
8.3 渠道分析的意義
8.3.1 最佳渠道是運營之外使產品的利益最大化的方式
8.3.2 品牌的力量不容小覷
8.4 建立渠道數據分析體系
8.4.1 建立數據監控體系
8.4.2 渠道推廣分析的閉環
8.5 分析案例-游戲渠道分析
#### 第9章 內容分析
9.1 營銷分析與推送
9.1.1 理解用戶
9.1.2 營銷方式-推送
9.2 流失預測模型
9.2.1 數據準備
9.2.2 數據建模
9.3購買支付分析
9.3.1場景分析
9.3.2輸入法的局限
9.3.3 批量購買的設計
9.3.4 轉化率
9.4版本運營分析
9.4.1把握用戶的期待
9.4.2地圖
9.4.3 武器
9.4.4新道具
9.4.5其他更新
9.5長尾理論實踐
9.5.1概念
9.5.2顧尾不顧頭
9.5.3長尾與二八法則
9.5.4尾部的挖掘
9.5.5案例-FPS游戲的長尾策略
9.6活動運營分析
9.6.1理解活動運營
9.6.2活動數據分析
#### 第10章 R語言游戲分析入門
10.1R語言概述
10.2新手上路
10.3R語言數據結構
10.3.1向量
10.3.2矩陣
10.3.3數組
10.3.4 數據框
10.3.5列表
10.4R語言數據處理
10.4.1類型轉換
10.4.2缺失值處理
10.4.3排序
10.4.4去重
10.4.5數據匹配
10.4.6分組統計
10.4.7數據變換
10.4.8創建重復序列rep
10.4.9創建等差序列seq
10.4.10隨機抽樣sample
10.4.11控制流
10.4.12創建函數
10.4.13字符串處理
10.5基礎分析之"數據探索"
10.5.1數據概況理解
10.5.2單指標分析
10.5.3雙變量分析
#### 第11章 R語言數據可視化與數據庫交互
11.1R語言數據可視化
11.2常用參數設置
11.2.1顏色
11.2.2點和線設置
11.2.3文本設置
11.3低級繪圖函數
11.3.1標題
11.3.2坐標軸
11.3.3網格線
11.3.4圖例
11.3.5點線和文字
11.3.6par函數
11.4高級繪圖函數
11.5R語言與數據庫交互
#### 第12章 R語言游戲數據分析實踐
12.1玩家喜好對應分析
12.1.1對應分析的基本思想
12.1.2 玩家購買物品對應分析
12.1.3討論與總結
12.2玩家物品購買關聯分析
12.2.1算法介紹
12.2.2物品購買關聯分析
12.2.3討論與總結
12.3基于密度聚類判斷高密度游戲行為
12.3.1案例背景
12.3.2DBSCAN算法基本原理
12.3.3數據探索
12.3.4數據處理
12.3.5模型過程
12.3.6多核并行提高效率
12.3.7討論與總結
12.4網絡關系圖分析應用
12.4.1網絡圖的基本概念
12.4.2創建網絡關系圖
12.4.3畫網絡關系圖
12.4.4網絡關系分析與應用
12.4.5討論與總結