<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                ## 1.2 特征與價格相關性——相關性矩陣 ```python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # 假設你的數據保存在一個CSV文件中,列名與你的問題中給出的相同 df = pd.read_csv('car_price.csv') # 替換為你的數據文件路徑 # 計算相關性矩陣 corr_matrix = df.corr() # 繪制熱力圖展示相關性 plt.figure(figsize=(10, 8)) # 畫出相關性矩陣熱力圖 sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1) plt.title('Correlation Matrix') plt.show() ``` ## 1.3 特征與價格相關性——散點圖 ```Python # 選擇與價格相關性最強的幾個特征進行散點圖繪制 # 為enginesize(排量)特征繪制散點圖 plt.figure(figsize=(6, 4)) sns.scatterplot(x='enginesize', y='price', data=df) plt.title('Enginesize vs Price') plt.xlabel('Engine Size') plt.ylabel('Price') plt.show() # 同樣地,你可以為horsepower特征繪制散點圖 plt.figure(figsize=(6, 4)) sns.scatterplot(x='horsepower', y='price', data=df) plt.title('Horsepower vs Price') plt.xlabel('Horsepower') plt.ylabel('Price') plt.show() ``` ## 1.4 線性回歸預測車價 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # 1. 導入數據 df = pd.read_csv('car_price.csv') # 假設Excel文件名為car_data.xlsx # 2. 數據預處理:選擇特征和目標變量 X = df[['wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'enginesize', 'horsepower']] y = df['price'] # 3. 劃分訓練集和測試集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 4. 訓練線性回歸模型 model = LinearRegression() model.fit(X_train, y_train) #5. 評估模型 y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print(f'Mean Squared Error: {mse:.2f}') # 6. 預測新數據 # 例如,預測一個車輪基距為89,車長為170,車寬為65,車高為50,整備質量為2600,發動機尺寸為140,馬力為120的車的價格 new_data = [[89, 170, 65, 50, 2600, 140, 120]] predicted_price = model.predict(new_data) print(f'Predicted Price: {predicted_price[0]:.2f}') ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看