<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## 2.1 井下溫度缺失值和異常值處理 ``` import numpy as np temperature_str = np.loadtxt('ug_detect.csv',\ dtype = bytes, \ delimiter=',',\ skiprows=1,\ usecols=(1),\ unpack = False) print("讀取出的數組是temperature_str:\n", \ temperature_str) temperature = np.ndarray( len(temperature_str) ) for index in range(0, len(temperature_str)) : item = temperature_str[index] if item != b"": item = item.decode( 'gb2312' ) item = float( item ) else: item = None temperature[index] = item for index in range(0, len(temperature)) : item = temperature[index] if item >= 500.0: item = None temperature[index] = item print("溫度是:\n", temperature) import matplotlib.pyplot as plt t = np.arange( len( temperature )) plt.plot(t,temperature) plt.plot(t,temperature,'pr') plt.show() def bisec(dataArray): for index in range(0, len(dataArray)) : if np.isnan ( dataArray[index]): dataArray[index] = 0.5 * ( dataArray[index - 1] + dataArray[index + 1] ) bisec(temperature) t = np.arange( len( temperature )) plt.plot(t,temperature) plt.plot(t,temperature,'pr') plt.show() import time import random while True: print("aaa") time.sleep(5) ``` ## 2.2 使用pandas ``` import pandas as pd import matplotlib.pyplot as plt import scipy.interpolate as itp ug_data = pd.read_csv('ug_detect.csv',\ header = 0, \ encoding='gb2312') temperature_data = ug_data[u'溫度(?C)'] humidity_data = ug_data[u'相對濕度'] gas_data = ug_data[u'瓦斯(m?/min)'] co_data = ug_data[u'一氧化碳(m?/min)'] #尋找異常值并設置為None def defectsCop(data_series, threshold): for index in range(0, len(data_series)): item = data_series[index] if item >= float(threshold): item = None data_series[index] = item def seriesItp(data_series): for index in range(0, len(data_series)) : item = data_series[index] if pd.isnull( data_series[index] ): x_list = [index - 1, index + 1] y_list = [ data_series[index - 1],\ data_series[index + 1]] lagrange_poly = itp.lagrange(x_list, y_list) data_series[index] = lagrange_poly(index) defectsCop(temperature_data, 60) defectsCop(humidity_data, 200) defectsCop(gas_data, 100) defectsCop(co_data, 100) seriesItp(temperature_data) seriesItp(humidity_data) seriesItp(gas_data) seriesItp(co_data) all_data = pd.DataFrame(\ {"溫度":temperature_data,\ "相對濕度":humidity_data,\ "瓦斯濃度":gas_data, \ "一氧化碳濃度":co_data}) all_data.to_csv('all_data_pandas.csv',\ index = False, \ encoding='gb2312') ``` ## 3.1 歌詞處理 ``` # 1 句頻統計 import re from collections import Counter from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation # 讀取歌詞文件 with open('jaychou_lyrics.txt', 'r', encoding='utf-8') as f: lyrics = f.read() # 分句 words = re.findall(r'\w+', lyrics) # 統計句頻 word_count = Counter(words) print("Top 10 words:") for word, count in word_count.most_common(10): print(f"{word}: {count}") #2 提詞器 import pandas as pd # 假設txt文件名為'jay_lyrics.txt' file_name = 'jaychou_lyrics.txt' # 讀取txt文件到pandas Series with open(file_name, 'r', encoding='utf-8') as f: lyrics = pd.Series(f.read().splitlines()) # 使用splitlines()按行分割 # 創建一個函數來查找并返回下一句歌詞 def get_next_line(input_line): # 嘗試找到輸入的歌詞在Series中的索引 index = lyrics[lyrics == input_line].index.min() # 檢查是否找到了歌詞并且不是最后一行 if not pd.isnull(index) and index < len(lyrics) - 1: # 返回下一句歌詞 return lyrics.iloc[index + 1] else: # 如果沒有找到或者已經是最后一行,返回相應信息 return "未找到該句歌詞或已經是最后一句了。" # 用戶輸入歌詞 user_input = input("請輸入一句歌詞:") # 調用函數并輸出結果 print(get_next_line(user_input)) ``` ## 4.1 幸福指數 ### 補充map小練習 ``` import pandas as pd # 假設我們有一個DataFrame,其中一列名為'ChineseWords' data = { 'ChineseWords': ['你好', '謝謝', '再見'] } df = pd.DataFrame(data) # 創建一個字典作為翻譯表 translation_dict = { '你好': 'Hello', '謝謝': 'Thank you', '再見': 'Goodbye' } # 使用map方法將'ChineseWords'列中的值翻譯成英文 df['EnglishWords'] = df['ChineseWords'].map(translation_dict) # 打印翻譯后的DataFrame print(df) ``` ``` import pandas as pd # 假設數據已經加載到DataFrame中,名為df df = pd.read_excel('happy.xls').dropna() # 如果數據是從CSV文件加載 # 數據清洗和預處理 # 檢查缺失值 print(df.isnull().sum()) # 將分類變量轉換為數值型 df['性別'] = df['性別'].map({'男': 1, '女': 0}) # 假設還有女性數據 df['是否城市'] = df['是否城市'].map({'城市': 1, '農村': 0}) df['婚姻狀況'] = df['婚姻狀況'].map({'已婚': 1, '未婚': 0}) # 假設還有其他婚姻狀況 df['健康狀況'] = df['健康狀況'].map({'是': 1, '否': 0}) # 假設健康狀況有'是'和'否'兩種 df['公共服務態度'] = df['公共服務態度'].map({'滿意': 1, '不滿意': 0}) # 假設還有'不滿意'選項 # 去除不需要的列 df = df.drop(['編號', '調查時間'], axis=1) # 查看預處理后的數據 print(df.head(100)) # 任務二 from sklearn.preprocessing import StandardScaler # 創建新特征:年齡和總收入 df['年齡'] = 2023 - df['出生年'] df['總收入'] = df['個人收入'] + df['家庭收入'] # 刪除原始的個人收入和家庭收入列(可選) df = df.drop(['個人收入', '家庭收入'], axis=1) 數據標準化 scaler = StandardScaler() df[['年齡', '總收入']] = scaler.fit_transform(df[['年齡', '總收入']]) # 查看帶有新特征的數據 print(df.head()) ``` ## 5.3 內、外、左、右連接——合并母嬰購物數據 ``` import pandas as pd # 假設數據已經加載到DataFrame中,名為df mum_baby = pd.read_csv('mum_baby.csv').dropna() # 如果數據是從CSV文件加載 trade_history = pd.read_csv('trade_history.csv').dropna() # 如果數據是從CSV文件加載 pd.merge(mum_baby, trade_history, on='user_id', how='right') ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看