<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 數據建模-數據集特征獲取 ***** **以下內容均按照作者的個人思路去編排,如果有更好的想法等,則以自己的優先** ***** ## 一、過濾圖像數據集 待更新...... ## 二、按類別求圖像(集)的均值、方差 1. 求圖像的均值、方差 ``` import cv2 img1 = cv2.imread("D:/Source Code/Python/Conda/AI/data/seg_data/seg_train/seg_train/forest/8.jpg",1) print (img1[0][0])#輸出原始圖像的通道值 mean_image = np.mean(img1, axis=0)#對圖像求均值 var_image = np.var(img1, axis=0)#對圖像求方差 print ("-----------------------------------------------") print ("mean_image的形狀以及數值") print (mean_image.shape) print (mean_image[0]) print ("var_image的形狀以及數值") print (var_image.shape) print (var_image[0]) print ("-----------------------------------------------") ``` 結果:(與之類似即可) ![](https://img.kancloud.cn/1f/38/1f3873a7336321ec98b55208b9821917_699x237.png) 2. 求圖像集的均值、方差 ``` import os from PIL import Image #加載圖像 import matplotlib.pyplot as plt import numpy as np from imageio import imread #讀取圖像 filepath = r'D:/Source Code/Python/Conda/AI/data/seg_data/seg_train/seg_train/forest'#載入數據集目錄 pathDir = os.listdir(filepath)#返回指定的文件夾包含的文件或文件夾的名字的列表給pathDir R_channel = 0#R通道=0 G_channel = 0#G通道=0 B_channel = 0#B通道=0 for idx in range(len(pathDir)):#將索引指定為循環體為0~pathDir的長度-1 filename = pathDir[idx]#將包含索引的pathDir賦給filename img = imread(os.path.join(filepath, filename)) / 255.0#將'filepath'與'filename'拼接在一起并歸一化,之后賦給img R_channel = R_channel + np.sum(img[:, :, 0])#獲取讀取到的img中,單通道0的像素值并求和,之后與R通道的值合并在一起 G_channel = G_channel + np.sum(img[:, :, 1])#獲取讀取到的img中,單通道1的像素值并求和,之后與G通道的值合并在一起 B_channel = B_channel + np.sum(img[:, :, 2])#獲取讀取到的img中,單通道2的像素值并求和,之后與B通道的值合并在一起 #一張RGB圖像可以看成一個三維的矩陣,矩陣中的每一個數表示了圖像上不同位置,不同顏色的亮度。 num = len(pathDir) * 155 * 155 #這里(155*155)是每幅圖片的大小,所有圖片尺寸必須都一樣,將pathDir的個數*155*155賦給num R_mean = R_channel / num#R的均值為'R通道的值÷num' G_mean = G_channel / num#G的均值為'G通道的值÷num' B_mean = B_channel / num#B的均值為'B通道的值÷num' R_channel = 0 G_channel = 0 B_channel = 0 for idx in range(len(pathDir)): filename = pathDir[idx] img = imread(os.path.join(filepath, filename)) / 255.0 #獲取讀取到的img中,單通道0的像素值并求和,之后減去R的均值,再將得到的值平方,然后與R通道的值合并在一起賦給R_channel R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2) #獲取讀取到的img中,單通道1的像素值并求和,之后減去G的均值,再將得到的值平方,然后與G通道的值合并在一起賦給G_channel G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2) #獲取讀取到的img中,單通道2的像素值并求和,之后減去B的均值,再將得到的值平方,然后與B通道的值合并在一起賦給B_channel B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2) R_var = np.sqrt(R_channel / num)#R的方差為'R通道的值÷num再開方' G_var = np.sqrt(G_channel / num)#G的方差為'G通道的值÷num再開方' B_var = np.sqrt(B_channel / num)#B的方差為'B通道的值÷num再開方' print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean)) print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var)) ``` 結果:(與之類似即可) ![](https://img.kancloud.cn/56/62/5662588560d653da41cb4588be423aae_756x64.png) * 拓展學習(統一圖片尺寸): ``` from PIL import Image import os def image_resize(image_path, new_path): # 統一圖片尺寸 print('============>>修改圖片尺寸') for img_name in os.listdir(image_path): img_path = image_path + "/" + img_name # 獲取該圖片全稱 image = Image.open(img_path) # 打開特定一張圖片 image = image.resize((512, 512)) # 設置需要轉換的圖片大小 image.save(new_path + '/'+ img_name) # 按照原圖像名稱保存圖像至新路徑 print("end the processing!") if __name__ == '__main__': print("ready for :::::::: ") ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages" # 輸入圖片的文件夾路徑 new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape' # 轉換之后的文件夾路徑,注意反斜杠 image_resize(ori_path, new_path) ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看