<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## 基于GPU加速的OpenCV人體檢測(Full Body Detection) ### 1、CUDA和OpenCV的安裝 首先,確定一下自己的平臺是否安裝好了CUDA和OpenCV。 CUDA的安裝可以參考:[http://blog.csdn.net/frd2009041510/article/details/42042807](http://blog.csdn.net/frd2009041510/article/details/42042807)和[http://blog.csdn.net/frd2009041510/article/details/42925205](http://blog.csdn.net/frd2009041510/article/details/42925205) OpenCV的安裝可以參考:[http://blog.csdn.net/frd2009041510/article/details/42930113](http://blog.csdn.net/frd2009041510/article/details/42930113) ### 2、Simply build the OpenCV HOG (Hough Of Gradients) sample person detector program ~~~ cd opencv-2.4.9/samples/gpu g++ hog.cpp -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_calib3d -lopencv_contrib -lopencv_features2d -lopencv_flann -lopencv_gpu -lopencv_legacy -lopencv_ml -lopencv_nonfree -lopencv_objdetect -lopencv_photo -lopencv_stitching -lopencv_superres -lopencv_video -lopencv_videostab -o hog ~~~ 進入目錄: ![](https://box.kancloud.cn/2016-05-07_572d61737f9a4.jpg) 編譯: ![](https://box.kancloud.cn/2016-05-07_572d617395e43.jpg) ### 3、run the HOG demo ~~~ ./hog --video 768x576.avi ~~~ 注意:You can run the HOG demo such as on a pre-recorded video of people walking around. The HOG demo displays a graphical output, hence you should plug a HDMI monitor in or use a remote viewer such as X Tunneling or VNC or TeamViewer on your desktop in order to see the output. 結果截圖如下: ![](https://box.kancloud.cn/2016-05-07_572d6173aacd9.jpg) ![](https://box.kancloud.cn/2016-05-07_572d6173c2d62.jpg) 如果有攝像頭,可以執行下面的命令來完成演示: ~~~ ./hog --camera 0 ~~~ ![](https://box.kancloud.cn/2016-05-07_572d61740fe61.jpg) 注意:Note: This looks for whole bodies and assumes they are small, so you need to stand atleast 5m away from the camera if you want it to detect you! 結果截圖如下: ![](https://box.kancloud.cn/2016-05-07_572d617423687.jpg) ### 4、HOG demo中的一些控制命令 **You can toggle between CPU vs GPU by pressing 'm', where you will see that the GPU is typically 5x faster at HOG than the CPU!** ![](https://box.kancloud.cn/2016-05-07_572d617451017.jpg)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看