### 前言
? ? ? multimap的特性及其用法和map完全相同,唯一的區別就是multimap允許鍵值key重復,因此multimap的插入操作采用的是底層RB-Tree的insert_equal()而非insert_unique(),有關map容器的介紹前往博文《[關聯容器之map](http://blog.csdn.net/chenhanzhun/article/details/39529425)》。本文的源碼出自SGI STL中的<stl_multimap.h>文件。
### multimap容器源碼剖析
~~~
#ifndef __SGI_STL_INTERNAL_MULTIMAP_H
#define __SGI_STL_INTERNAL_MULTIMAP_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
// Forward declaration of operators < and ==, needed for friend declaration.
//multimap的特性及其用法和map完全相同,唯一的區別就是multimap允許鍵值key重復
//因此multimap的插入操作采用的是底層RB-Tree的insert_equal()而非insert_unique()
//有關map容器的剖析見前面博文
//map內部元素根據鍵值key默認使用遞增排序less
//用戶可自行制定比較類型
//內部維護的數據結構是紅黑樹, 具有非常優秀的最壞情況的時間復雜度
//注意:multimap允許元素重復,即鍵值和實值都可以重復,這點與map不同
template <class _Key, class _Tp,
class _Compare __STL_DEPENDENT_DEFAULT_TMPL(less<_Key>),
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class multimap;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
class multimap {
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
__STL_CLASS_BINARY_FUNCTION_CHECK(_Compare, bool, _Key, _Key);
public:
// typedefs:
//下面的定義與map相同
typedef _Key key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
//嵌套類,提供鍵值key比較函數接口
//繼承自<stl_function.h>中的binary_function
/*
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
*/
class value_compare : public binary_function<value_type, value_type, bool> {
friend class multimap<_Key,_Tp,_Compare,_Alloc>;
protected:
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);
}
};
private:
//底層機制是RB-Tree
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing multimap
public:
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
//map的迭代器不直接定義為const_iterator,而是分別定義iterator,const_iterator
//是因為map的鍵值key不能被修改,因為必須遵守比較函數的排序規則,所以必須定義為const_iterator
//而map的實值value可以被修改,則定義為iterator
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
// 注意:multimap只能使用RB-tree的insert-equal(),不能使用insert-unique()
/*
構造函數
multimap();
explicit multimap (const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
template <class InputIterator>
multimap (InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
multimap (const multimap& x);
*/
multimap() : _M_t(_Compare(), allocator_type()) { }
explicit multimap(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#else
multimap(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const value_type* __first, const value_type* __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
multimap(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const_iterator __first, const_iterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
//拷貝構造函數
multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { }
//這里提供了operator=,即可以通過=初始化對象
multimap<_Key,_Tp,_Compare,_Alloc>&
operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) {
_M_t = __x._M_t;
return *this;
}
// accessors:
//返回鍵值的比較函數,這里是調用RB-Tree的key_comp()
key_compare key_comp() const { return _M_t.key_comp(); }
//返回實值的比較函數
//這里調用的是map嵌套類中定義的比較函數
/*
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_Key,_Tp,_Compare,_Alloc>;
protected :
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);//以鍵值調用比較函數
}
*/
//實際上最終還是調用鍵值key的比較函數,即他們是調用同一個比較函數
value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() { return _M_t.begin(); }
const_iterator begin() const { return _M_t.begin(); }
iterator end() { return _M_t.end(); }
const_iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() { return _M_t.rbegin(); }
const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() { return _M_t.rend(); }
const_reverse_iterator rend() const { return _M_t.rend(); }
//判斷容器multimap是否為空
bool empty() const { return _M_t.empty(); }
//返回容器multimap的大小
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
//交換multimap對象的內容
void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
/*
multimap只能使用RB-tree的insert-equal()
插入元素
iterator insert (const value_type& val);
iterator insert (iterator position, const value_type& val);
template <class InputIterator>
void insert (InputIterator first, InputIterator last);
*/
//插入元素節點,調用RB-Tree的insert-equal();
//插入元素的鍵值key允許重復
iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); }
//在指定位置插入元素
iterator insert(iterator __position, const value_type& __x) {
return _M_t.insert_equal(__position, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
//插入[first,last)元素
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_equal(__first, __last);
}
#else
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_equal(__first, __last);
}
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_equal(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
/*
擦除元素
void erase (iterator position);
size_type erase (const key_type& k);
void erase (iterator first, iterator last);
*/
//在指定位置擦除元素
void erase(iterator __position) { _M_t.erase(__position); }
//擦除指定鍵值的節點
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
//擦除指定區間的節點
void erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
//清空容器
void clear() { _M_t.clear(); }
// multimap operations:
//查找指定鍵值的節點
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
//計算指定鍵值元素的個數
size_type count(const key_type& __x) const { return _M_t.count(__x); }
//Returns an iterator pointing to the first element in the container
//whose key is not considered to go before k (i.e., either it is equivalent or goes after).
//this->first is greater than or equivalent to __x.
iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
//Returns an iterator pointing to the first element that is greater than key.
iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
//Returns the bounds of a range that includes all the elements in the container
//which have a key equivalent to k
//Because the elements in a map container have unique keys,
//the range returned will contain a single element at most.
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
//以下是操作符重載
#ifdef __STL_TEMPLATE_FRIENDS
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator== (const multimap<_K1, _T1, _C1, _A1>&,
const multimap<_K1, _T1, _C1, _A1>&);
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator< (const multimap<_K1, _T1, _C1, _A1>&,
const multimap<_K1, _T1, _C1, _A1>&);
#else /* __STL_TEMPLATE_FRIENDS */
friend bool __STD_QUALIFIER
operator== __STL_NULL_TMPL_ARGS (const multimap&, const multimap&);
friend bool __STD_QUALIFIER
operator< __STL_NULL_TMPL_ARGS (const multimap&, const multimap&);
#endif /* __STL_TEMPLATE_FRIENDS */
};
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_MULTIMAP_H */
// Local Variables:
// mode:C++
// End:
~~~
參考資料:
《STL源碼剖析》侯捷
- 前言
- 空間配置器
- Traits編程技術
- STL源碼剖析——迭代器
- 全局函數construct(),destroy(),uninitialized_copy(),uninitialized_fill(),uninitialized_fill_n()
- 序列容器之vector
- list容器的排序算法sort()
- 序列容器之list
- 序列容器之deque
- 容器配接器之stack
- 容器配接器之queue
- 容器配接器之priority_queue
- 最大堆heap
- 單向鏈表slist
- RB-Tree(紅黑樹)
- 關聯容器之set
- stl_pair.h學習
- 關聯容器之map
- 關聯容器之multiset
- 關聯容器之multimap
- 散列表hashtable
- stl_hash_fun.h學習
- 關聯容器之hash_set
- 關聯容器之hash_multiset
- 關聯容器之hash_map
- 關聯容器之hash_multimap
- 數值算法stl_numeric.h
- stl_relops.h學習
- 基本算法stl_algobase.h
- STL算法之set集合算法
- STL算法stl_algo.h
- STL算法之sort排序算法
- STL算法之find查找算法
- STL算法之merge合并算法
- STL算法之remove刪除算法
- STL算法之permutation排列組合
- STL函數對象