Goroutine協程:
協程擁有自己的寄存器上下文和棧。協程調度切換時,將寄存器上下文和棧保存到其他地方,在切回來的時候,恢復先前保存的寄存器上下文和棧。 因此,協程能保留上一次調用時的狀態(即所有局部狀態的一個特定組合),每次過程重入時,就相當于進入上一次調用的狀態,換種說法:進入上一次離開時所處邏輯流的位置。
線程和進程的操作是由程序觸發系統接口,最后的執行者是系統;協程的操作執行者則是用戶自身程序,goroutine也是協程。
groutine能擁有強大的并發實現是通過GPM調度模型實現.
Go的調度器內部有四個重要的結構:M,P,S,Sched,如上圖所示(Sched未給出).
* M: M代表內核級線程,一個M就是一個線程,goroutine就是跑在M之上的;M是一個很大的結構,里面維護小對象內存cache(mcache)、當前執行的goroutine、隨機數發生器等等非常多的信息.
* G: 代表一個goroutine,它有自己的棧,instruction pointer和其他信息(正在等待的channel等等),用于調度.
* P: P全稱是Processor,邏輯處理器,它的主要用途就是用來執行goroutine的,所以它也維護了一個goroutine隊列,里面存儲了所有需要它來執行的goroutine.
* Sched:代表調度器,它維護有存儲M和G的隊列以及調度器的一些狀態信息等.
Go中的GPM調度:
新創建的G 會先保存在 P 的本地隊列中,如果 P 的本地隊列已經滿了就會保存在全局的隊列中,最終等待被邏輯處理器P執行即可。
在M與P綁定后,M會不斷從P的Local隊列中無鎖地取出G,并切換到G的堆棧執行,當P的Local隊列中沒有G時,再從Global隊列中獲取一個G,當Global隊列中也沒有待運行的G時,則嘗試從其它的P竊取部分G來執行相當于P之間的負載均衡。
[](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/65.jpg)
從上圖中可以看到,有2個物理線程M,每一個M都擁有一個處理器P,每一個也都有一個正在運行的goroutine。P的數量可以通過GOMAXPROCS()來設置,它其實也就代表了真正的并發度,即有多少個goroutine可以同時運行。
圖中灰色的那些goroutine并沒有運行,而是出于ready的就緒態,正在等待被調度。P維護著這個隊列(稱之為runqueue),Go語言里,啟動一個goroutine很容易:go function 就行,所以每有一個go語句被執行,runqueue隊列就在其末尾加入一個goroutine,在下一個調度點,就從runqueue中取出(如何決定取哪個goroutine?)一個goroutine執行。
當一個OS線程M0陷入阻塞時,P轉而在運行M1,圖中的M1可能是正被創建,或者從線程緩存中取出。
[](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/60.jpg)
當M0返回時,它必須嘗試取得一個P來運行goroutine,一般情況下,它會從其他的OS線程那里拿一個P過來,如果沒有拿到的話,它就把goroutine放在一個`global runqueue`里,然后自己睡眠(放入線程緩存里)。所有的P也會周期性的檢查`global runqueue`并運行其中的goroutine,否則`global runqueue`上的goroutine永遠無法執行。
另一種情況是P所分配的任務G很快就執行完了(分配不均),這就導致了這個處理器P處于空閑的狀態,但是此時其他的P還有任務,此時如果global runqueue沒有任務G了,那么這個P就會從其他的P里偷取一些G來執行。
[](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/64.jpg)
通常來說,如果P從其他的P那里要拿任務的話,一般就拿`run queue`的一半,這就確保了每個OS線程都能充分的使用。
[](https://github.com/KeKe-Li/data-structures-questions/blob/master/src/images/129.jpg)
- Golang基礎
- Go中new與make的區別
- Golang中除了加Mutex鎖以外還有哪些方式安全讀寫共享變量
- 無緩沖Chan的發送和接收是否同步
- Golang并發機制以及它所使用的CSP并發模型.
- Golang中常用的并發模型
- Go中對nil的Slice和空Slice的處理是一致的嗎
- 協程和線程和進程的區別
- Golang的內存模型中為什么小對象多了會造成GC壓力
- Go中數據競爭問題怎么解決
- 什么是channel,為什么它可以做到線程安全
- Golang垃圾回收算法
- GC的觸發條件
- Go的GPM如何調度
- 并發編程概念是什么
- Go語言的棧空間管理是怎么樣的
- Goroutine和Channel的作用分別是什么
- 怎么查看Goroutine的數量
- Go中的鎖有哪些
- 怎么限制Goroutine的數量
- Channel是同步的還是異步的
- Goroutine和線程的區別
- Go的Struct能不能比較
- Go的defer原理是什么
- Go的select可以用于什么
- Context包的用途是什么
- Go主協程如何等其余協程完再操作
- Go的Slice如何擴容
- Go中的map如何實現順序讀取
- Go中CAS是怎么回事
- Go中的逃逸分析是什么
- Go值接收者和指針接收者的區別
- Go的對象在內存中是怎樣分配的
- 棧的內存是怎么分配的
- 堆內存管理怎么分配的
- 在Go函數中為什么會發生內存泄露
- G0的作用
- Go中的鎖如何實現
- Go中的channel的實現
- 棧的內存是怎么分配的2
- 堆內存管理怎么分配的2
- Go中的map的實現
- Go中的http包的實現原理
- Goroutine發生了泄漏如何檢測
- Go函數返回局部變量的指針是否安全
- Go中兩個Nil可能不相等嗎
- Goroutine和KernelThread之間是什么關系
- 為何GPM調度要有P
- 如何在goroutine執行一半就退出協程
- Mysql基礎
- Mysql索引用的是什么算法
- Mysql事務的基本要素
- Mysql的存儲引擎
- Mysql事務隔離級別
- Mysql高可用方案有哪些
- Mysql中utf8和utf8mb4區別
- Mysql中樂觀鎖和悲觀鎖區別
- Mysql索引主要是哪些
- Mysql聯合索引最左匹配原則
- 聚簇索引和非聚簇索引區別
- 如何查詢一個字段是否命中了索引
- Mysql中查詢數據什么情況下不會命中索引
- Mysql中的MVCC是什么
- Mvcc和Redolog和Undolog以及Binlog有什么不同
- Mysql讀寫分離以及主從同步
- InnoDB的關鍵特性
- Mysql如何保證一致性和持久性
- 為什么選擇B+樹作為索引結構
- InnoDB的行鎖模式
- 哈希(hash)比樹(tree)更快,索引結構為什么要設計成樹型
- 為什么索引的key長度不能太長
- Mysql的數據如何恢復到任意時間點
- Mysql為什么加了索引可以加快查詢
- Explain命令有什么用
- Redis基礎
- Redis的數據結構及使用場景
- Redis持久化的幾種方式
- Redis的LRU具體實現
- 單線程的Redis為什么快
- Redis的數據過期策略
- 如何解決Redis緩存雪崩問題
- 如何解決Redis緩存穿透問題
- Redis并發競爭key如何解決
- Redis的主從模式和哨兵模式和集群模式區別
- Redis有序集合zset底層怎么實現的
- 跳表的查詢過程是怎么樣的,查詢和插入的時間復雜度
- 網絡協議基礎
- TCP和UDP有什么區別
- TCP中三次握手和四次揮手
- TCP的LISTEN狀態是什么
- 常見的HTTP狀態碼有哪些
- 301和302有什么區別
- 504和500有什么區別
- HTTPS和HTTP有什么區別
- Quic有什么優點相比Http2
- Grpc的優缺點
- Get和Post區別
- Unicode和ASCII以及Utf8的區別
- Cookie與Session異同
- Client如何實現長連接
- Http1和Http2和Grpc之間的區別是什么
- Tcp中的拆包和粘包是怎么回事
- TFO的原理是什么
- TIME_WAIT的作用
- 網絡的性能指標有哪些