<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                [TOC] <br/><br/><br/> # <b style="color:#4F4F4F;">簡介說明</b> 原文鏈接: - [github](https://github.com/younghz/Markdown) ``` 版本:Markdown 作用:使用普通文本編輯器編寫的標記語言 ``` <br/> # <b style="color:#4F4F4F;">排版元素</b> <br/> # <span style="color:#619BE4">#...n</span> ***** 標題,#越多標題級別越低 <br/> # <span style="color:#619BE4">\`\`\`python\`\`\`</span> ***** 代碼塊 <br/> # <span style="color:#619BE4">縮進-</span> ***** 列表目錄樹 <br/> # <span style="color:#619BE4">---</span> ***** 水平分割線 <br/> # <span style="color:#619BE4">\> </span> ***** 引用塊 <br/> # <b style="color:#4F4F4F;">數學公式</b> <br/> # <span style="color:#619BE4">$$</span> ***** 聲明公式塊 <br/> ### 示例內容 <span style="color:red;">1. 舉例說明</span> ``` $$ x^3\\ x_1\\ {16}^{2+2}\\ V_{\mbox{初始}}\\ \frac{x+y}{y+z}\\ \underline{x+y}\\ \overbrace{a+b+c+d}^{2.0}\\ a+\underbrace{b+c}_{1.0}+d\\ \vec{x}\stackrel{\mathrm{def}}{=}{x_1,\dots,x_n}\\ x \qquad y\\ x \quad y\\ x \ y\\ ()\big(\big) \Big(\Big) \bigg(\bigg) \Bigg(\Bigg) {n+1 \choose k}={n \choose k}+{n \choose k-1}\\ \sum_{k_0,k_1,\ldots>0 \atop k_0+k_1+\cdots=n}A_{k_0}A_{k_1}\cdots\\ x \pm y=z\\ x \mp y=z\\ x \times y=z\\ x \cdot y=z\\ x \ast y=z\\ x \div y=z\\ \frac{x+y}{y+z}\\ {x+y} \over {y+z}\\ \overline{xyz}\\ \sqrt x\\ \sqrt[3]{x+y}\\ \log(x)\\ \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}\\ \displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}\\ \sum^{x \to \infty}_{y \to 0}{\frac{x}{y}}\\ \displaystyle \sum^{x \to \infty}_{y \to 0}{\frac{x}{y}}\\ \int^{\infty}_{0}{xdx}\\ \displaystyle \int^{\infty}_{0}{xdx}\\ \frac{\partial x}{\partial y}\\ x+y \geq z\\ x+y \leq z\\ x+y \neq z\\ x+y \ngeq z\\ x+y \not\geq z\\ x+y \nleq z\\ x+y \not\leq z\\ x+y \approx z\\ x+y \equiv z\\ x \in y\\ x \notin y\\ x \not\in y\\ x \subset y\\ x \supset y\\ x \subseteq y\\ x \subsetneq y\\ x \supseteq y\\ x \supsetneq y\\ x \not\subset y\\ x \not\supset y\\ x \cup y\\ x \cap y\\ x \setminus y\\ x \bigodot y\\ x \bigotimes y\\ \mathbb{R}\\ \mathbb{Z}\\ \emptyset\\ \infty\\ \imath\\ \jmath\\ \hat{a}\\ \check{a}\\ \breve{a}\\ \tilde{a}\\ \bar{a}\\ \vec{a}\\ \acute{a}\\ \acute{a}\\ \grave{a}\\ \mathring{a}\\ \dot{a}\\ \ddot{a}\\ \uparrow\\ \Uparrow\\ \downarrow\\ \Downarrow\\ \leftarrow\\ \Leftarrow\\ \rightarrow\\ \Rightarrow\\ 1,2,\ldots,n\\ x_1^2 + x_2^2 + \cdots + x_n^2\\ \vdots\\ \ddots\\ \alpha\\ \beta\\ \gamma\\ \delta\\ \epsilon\\ \zeta\\ \eta\\ \theta\\ \iota\\ \kappa\\ \lambda\\ \mu\\ \nu\\ \xi\\ \omicron\\ \pi\\ \rho\\ \sigma\\ \tau\\ \Upsilon\\ \upsilon\\ \Phi\\ \phi\\ \chi\\ \Psi\\ \omega\\ $$ ``` <br/>
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看