<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # `pandas`數據結構之`Series` > `Series`是一種類似于一維數組的對象,由一組數據(各種`NumPy`數據類型)以及一組與之相關的數據標簽(即索引)組成。 * * * ~~~ from pandas import Series, DataFrame import pandas as pd obj = Series([4, 7, -5, 3]) print(obj) // 0 4 1 7 2 -5 3 3 dtype: int64 ~~~ 從上面代碼可以看出,`Series`的字符串表現形式為:索引在左邊,值在右邊。在沒有為數據指定索引的前提下,會自動創建一個從0到N-1的整數型索引。可以通過`Series`的`values`和`index`屬性獲取其數組表示形式和索引對象。 ~~~ from pandas import Series, DataFrame import pandas as pd obj = Series([4, 7, -5, 3]) print(obj.index) //RangeIndex(start=0, stop=4, step=1) print(obj.values) //[ 4 7 -5 3] ~~~ * * * 通常,我們希望所創建的`Series`帶有一個可以對各個數據點進行標記的索引: ~~~ from pandas import Series, DataFrame import pandas as pd obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) print(obj2) // d 4 b 7 a -5 c 3 dtype: int64 ~~~ * * * 與普通`NumPy`數組相比,`Seria`可以通過索引的方式選取一個或一組值: ~~~ from pandas import Series, DataFrame import pandas as pd obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) print(obj2['a']) //-5 obj2['d'] = 6 print(obj2[['c', 'a', 'd']]) // c 3 a -5 d 6 dtype: int64 ~~~ * * * `NumPy`數組運算(如根據布爾型數組進行過濾,標量乘法,應用數學函數等)都會保留索引和值之間的鏈接: ~~~ from pandas import Series, DataFrame import pandas as pd obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) obj2['d'] = 6 print(obj2[obj2 > 0]) // d 6 b 7 c 3 dtype: int64 print(obj2*2) // d 12 b 14 a -10 c 6 dtype: int64 ~~~ * * * 還可以將`Series`看成是一個定長的有序字典,因為它是索引值到數據值的映射。它可以用在原本需要字典參數的函數中: ~~~ from pandas import Series, DataFrame import pandas as pd obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) obj2['d'] = 6 print('b' in obj2) //True print('e' in obj2) //False ~~~ * * * 如果數據被存放在一個`Python`字典中,也可以直接通過這個字典來創建`Series` ~~~ from pandas import Series, DataFrame import pandas as pd sData = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000} obj3 = Series(sData) print(obj3) // Ohio 35000 Oregon 16000 Texas 71000 Utah 5000 dtype: int64 ~~~
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看