<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                # DataFrame > DataFrame是一個表格型的數據結構,它含有一組有序的列,每列可以是不同的值類型(數值,字符串,布爾值)。DataFrame既有行索引也有列索引,它可以被看做由`Series`組成的字典。 * * * ## 由等長列表或`NumPy`數組組成的字典 構建`DataFrame` ~~~ from pandas import Series, DataFrame import pandas as pd data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame = DataFrame(data) print(frame) // pop state year 0 1.5 Ohio 2000 1 1.7 Ohio 2001 2 3.6 Ohio 2002 3 2.4 Nevada 2001 4 2.9 Nevada 2002 ~~~ 如果指定了序列列,則`DataFrame`的列就會按照指定順序進行排列: ~~~ from pandas import Series, DataFrame import pandas as pd data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame = DataFrame(data, columns=['year', 'state', 'pop']) print(frame) // year state pop 0 2000 Ohio 1.5 1 2001 Ohio 1.7 2 2002 Ohio 3.6 3 2001 Nevada 2.4 4 2002 Nevada 2.9 ~~~ * * * ## 通過類似字典標記的方式或屬性的方式,可以將`DataFrame`的列獲取為一個`Series` ~~~ from pandas import Series, DataFrame import pandas as pd data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five']) print(frame2['state']) // one Ohio two Ohio three Ohio four Nevada five Nevada Name: state, dtype: object print(frame2.year) // one 2000 two 2001 three 2002 four 2001 five 2002 Name: year, dtype: int64 ~~~ 返回的`Series`擁有原`DataFrame`相同的索引。 ## 行也可以通過位置或名稱的方式進行獲取,比如使用索引字段`ix` ~~~ from pandas import Series, DataFrame import pandas as pd data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five']) print(frame2.ix['three']) // year 2002 state Ohio pop 3.6 debt NaN Name: three, dtype: object ~~~ ## 列可以通過賦值的方式進行修改,例如給那個空的debt列賦上一個標量值或一組值 ~~~ from pandas import Series, DataFrame import pandas as pd import numpy as np data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five']) frame2['debt'] = 16.5 print(frame2) // year state pop debt one 2000 Ohio 1.5 16.5 two 2001 Ohio 1.7 16.5 three 2002 Ohio 3.6 16.5 four 2001 Nevada 2.4 16.5 five 2002 Nevada 2.9 16.5 frame2['debt'] = np.arange(5.) print(frame2) // year state pop debt one 2000 Ohio 1.5 0.0 two 2001 Ohio 1.7 1.0 three 2002 Ohio 3.6 2.0 four 2001 Nevada 2.4 3.0 five 2002 Nevada 2.9 4.0 ~~~ ## 將列表或數值賦值給某個列時,其長度必須根`DataFrame`的長度相匹配。如果賦值的是一個`Series`,就會精確匹配`DataFrame`的索引,所有的空位都會被填上缺失值 ~~~ from pandas import Series, DataFrame import pandas as pd import numpy as np data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five']) val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five']) frame2['debt'] = val print(frame2) // year state pop debt one 2000 Ohio 1.5 NaN two 2001 Ohio 1.7 -1.2 three 2002 Ohio 3.6 NaN four 2001 Nevada 2.4 -1.5 five 2002 Nevada 2.9 -1.7 ~~~ ## 為不存在的列賦值會創建出一個新列 ~~~ from pandas import Series, DataFrame import pandas as pd import numpy as np data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9]} frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five']) val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five']) frame2['debt'] = val frame2['eastern'] = frame2['state'] == 'Ohio' print(frame2) // year state pop debt eastern one 2000 Ohio 1.5 NaN True two 2001 Ohio 1.7 -1.2 True three 2002 Ohio 3.6 NaN True four 2001 Nevada 2.4 -1.5 False five 2002 Nevada 2.9 -1.7 False ~~~
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看