### 互斥鎖
當多個線程幾乎同時修改某一個共享數據的時候,需要進行同步控制
線程同步能夠保證多個線程安全訪問競爭資源,最簡單的同步機制是引入互斥鎖。
互斥鎖為資源引入一個狀態:鎖定/非鎖定。
某個線程要更改共享數據時,先將其鎖定,此時資源的狀態為“鎖定”,其他線程不能更改;直到該線程釋放資源,將資源的狀態變成“非鎖定”,其他的線程才能再次鎖定該資源。互斥鎖保證了每次只有一個線程進行寫入操作,從而保證了多線程情況下數據的正確性。

threading模塊中定義了Lock類,可以方便的處理鎖定:
~~~
#創建鎖
mutex = threading.Lock()
#鎖定
mutex.acquire([blocking])
#釋放
mutex.release()
~~~
其中,鎖定方法acquire可以有一個blocking參數。
* 如果設定blocking為True,則當前線程會堵塞,直到獲取到這個鎖為止(如果沒有指定,那么默認為True)
* 如果設定blocking為False,則當前線程不會堵塞
使用互斥鎖實現上面的例子的代碼如下:
~~~
from threading import Thread, Lock
import time
g_num = 0
def test1():
global g_num
for i in range(1000000):
#True表示堵塞 即如果這個鎖在上鎖之前已經被上鎖了,那么這個線程會在這里一直等待到解鎖為止
#False表示非堵塞,即不管本次調用能夠成功上鎖,都不會卡在這,而是繼續執行下面的代碼
mutexFlag = mutex.acquire(True)
if mutexFlag:
g_num += 1
mutex.release()
print("---test1---g_num=%d"%g_num)
def test2():
global g_num
for i in range(1000000):
mutexFlag = mutex.acquire(True) #True表示堵塞
if mutexFlag:
g_num += 1
mutex.release()
print("---test2---g_num=%d"%g_num)
#創建一個互斥鎖
#這個所默認是未上鎖的狀態
mutex = Lock()
p1 = Thread(target=test1)
p1.start()
p2 = Thread(target=test2)
p2.start()
print("---g_num=%d---"%g_num)
~~~
運行結果:
~~~
---g_num=61866---
---test1---g_num=1861180
---test2---g_num=2000000
~~~
可以看到,加入互斥鎖后,運行結果與預期相符。
上鎖解鎖過程
當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入“locked”狀態。
每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為“blocked”狀態,稱為“阻塞”,直到擁有鎖的線程調用鎖的release()方法釋放鎖之后,鎖進入“unlocked”狀態。
線程調度程序從處于同步阻塞狀態的線程中選擇一個來獲得鎖,并使得該線程進入運行(running)狀態。
### 總結
#### 鎖的好處:
* 確保了某段關鍵代碼只能由一個線程從頭到尾完整地執行
#### 鎖的壞處:
* 阻止了多線程并發執行,包含鎖的某段代碼實際上只能以單線程模式執行,效率就大大地下降了
* 由于可以存在多個鎖,不同的線程持有不同的鎖,并試圖獲取對方持有的鎖時,可能會造成死鎖