**一. 題目描述**
Evaluate the value of an arithmetic expression in Reverse Polish Notation.?
Valid operators are +, -, *, /. Each operand may be an integer or another expression.?
Some examples:
`["2", "1", "+", "3", "*"] -> ((2 + 1) * 3) -> 9`
`["4", "13", "5", "/", "+"] -> (4 + (13 / 5)) -> 6`
**二. 題目分析**
該題考查逆波蘭式,也叫后綴表達式(將運算符寫在操作數之后)。假設有一個表達式E,其后綴形式定義如下:
1. 如果E是一個變量或常量,則E的后綴式是E本身;
2. 如果E是E1 operator E2形式的表達式,這里 operator 是如何二元操作符,則E的后綴式為E1, E2,?
operator;
3. 如果E是 (E1) 形式的表達式,則 E1 的后綴式就是E的后綴式。
一個實際例子如下:
下面以`(a+b)*c`為例子進行說明:?
`(a+b)*c`的逆波蘭式為`ab+c*`,假設計算機把`ab+c*`按從左到右的順序壓入棧中,并且按照遇到運算符就把棧頂兩個元素出棧,執行運算,得到的結果再入棧的原則來進行處理,那么`ab+c*`的執行結果如下:
1. a入棧(0位置);
2. b入棧(1位置);
3. 遇到運算符`“+”`,將`a`和`b`出棧,執行`a+b`的操作,得到結果`d=a+b`,再將`d`入棧(0位置);
4. c入棧(1位置);
5. 遇到運算符`“*”`,將`d`和`c`出棧,執行`d*c`的操作,得到結果`e`,再將`e`入棧(0位置)。
經過以上運算,計算機就可以得到`(a+b)*c`的運算結果`e`了。
逆波蘭式計算等式的實現非常容易,使用堆棧即可完成。在程序中,需要實現整數與字符串之間的相互轉換。
**三. 示例代碼**
~~~
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
class Solution
{
public:
int str2int(string s) // string轉int
{
int result = 0;
int base = 1;
int t = 1; // 正負號
if (s[0] == '-')
t = -1;
for (int i = s.size() - 1; i >= 0; --i)
{
if (s[i] >= '0' && s[i] <= '9')
{
result += base * (s[i] - '0');
base *= 10;
}
}
return result * t;
}
int evalRPN(vector<string> &tokens)
{
stack<int> k;
for (int i = 0; i < tokens.size(); ++i)
{
if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/")
{
int Num2 = k.top(); // 第一個取出的是右操作數
k.pop();
int Num1 = k.top(); // 左操作數
k.pop();
if (tokens[i] == "+"){
k.push(Num1 + Num2);
}
else if (tokens[i] == "-"){
k.push(Num1 - Num2);
}
else if (tokens[i] == "*"){
k.push(Num1 * Num2);
}
else if (tokens[i] == "/"){
k.push(Num1 / Num2);
}
}
else
k.push(str2int(tokens[i]));
}
return k.top(); // 最后棧剩下一個元素,就是結果
}
};
~~~


**四. 小結**
雖然整個思路簡單,但在編寫程序時還是有一些細節的問題,如從棧彈出兩個操作數,第一個彈出的是右操作數,第二個是左操作數;是否需要考慮string轉int的問題;可能需要進一步考慮操作數是其他數據類型的情況,如浮點數;其他邊界條件是否需要考慮等等。。。
參考鏈接:[http://baike.baidu.com/link?url=q-x6bMceggqTTRtvBPKuH69fVoEyi6C_ylbEe9lvIHhlruHZ8bdQ6vGuSibCxvw5DWEMWeR98EmWs0Ineo1OTq](http://baike.baidu.com/link?url=q-x6bMceggqTTRtvBPKuH69fVoEyi6C_ylbEe9lvIHhlruHZ8bdQ6vGuSibCxvw5DWEMWeR98EmWs0Ineo1OTq)
- 前言
- 2Sum
- 3Sum
- 4Sum
- 3Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Search in Rotated Sorted Array
- Remove Element
- Merge Sorted Array
- Add Binary
- Valid Palindrome
- Permutation Sequence
- Single Number
- Single Number II
- Gray Code(2016騰訊軟件開發筆試題)
- Valid Sudoku
- Rotate Image
- Power of two
- Plus One
- Gas Station
- Set Matrix Zeroes
- Count and Say
- Climbing Stairs(斐波那契數列問題)
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle 2
- Integer to Roman
- Roman to Integer
- Valid Parentheses
- Reorder List
- Path Sum
- Simplify Path
- Trapping Rain Water
- Path Sum II
- Factorial Trailing Zeroes
- Sudoku Solver
- Isomorphic Strings
- String to Integer (atoi)
- Largest Rectangle in Histogram
- Binary Tree Preorder Traversal
- Evaluate Reverse Polish Notation(逆波蘭式的計算)
- Maximum Depth of Binary Tree
- Minimum Depth of Binary Tree
- Longest Common Prefix
- Recover Binary Search Tree
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Binary Tree Zigzag Level Order Traversal
- Sum Root to Leaf Numbers
- Anagrams
- Unique Paths
- Unique Paths II
- Triangle
- Maximum Subarray(最大子串和問題)
- House Robber
- House Robber II
- Happy Number
- Interlaving String
- Minimum Path Sum
- Edit Distance
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Decode Ways
- N-Queens
- N-Queens II
- Restore IP Addresses
- Combination Sum
- Combination Sum II
- Combination Sum III
- Construct Binary Tree from Inorder and Postorder Traversal
- Construct Binary Tree from Preorder and Inorder Traversal
- Longest Consecutive Sequence
- Word Search
- Word Search II
- Word Ladder
- Spiral Matrix
- Jump Game
- Jump Game II
- Longest Substring Without Repeating Characters
- First Missing Positive
- Sort Colors
- Search for a Range
- First Bad Version
- Search Insert Position
- Wildcard Matching