關于MySQL的管理維護的其他建議有:
1、通常地,單表物理大小不超過10GB,單表行數不超過1億條,行平均長度不超過8KB,如果機器性能足夠,這些數據量MySQL是完全能處理的過來的,不用擔心性能問題,這么建議主要是考慮ONLINE DDL的代價較高;
2、不用太擔心mysqld進程占用太多內存,只要不發生OOM kill和用到大量的SWAP都還好;
3、在以往,單機上跑多實例的目的是能最大化利用計算資源,如果單實例已經能耗盡大部分計算資源的話,就沒必要再跑多實例了;
4、定期使用pt-duplicate-key-checker檢查并刪除重復的索引。定期使用pt-index-usage工具檢查并刪除使用頻率很低的索引;
5、定期采集slow query log,用pt-query-digest工具進行分析,可結合Anemometer系統進行slow query管理以便分析slow query并進行后續優化工作;
6、可使用pt-kill殺掉超長時間的SQL請求,Percona版本中有個選項 innodb_kill_idle_transaction也可實現該功能;
7、使用pt-online-schema-change來完成大表的ONLINE DDL需求;
8、定期使用pt-table-checksum、pt-table-sync來檢查并修復mysql主從復制的數據差異;
- 數據庫
- CAP定理
- 關系模型
- 關系數據庫
- NoSQL
- ODBC
- JDBC
- ODBC、JDBC和四種驅動類型
- mysql
- 安裝與配置
- CentOS 7 安裝 MySQL
- 優化
- 比較全面的MySQL優化參考
- 1、硬件層相關優化
- 1.1、CPU相關
- 1.2、磁盤I/O相關
- 2、系統層相關優化
- 2.1、文件系統層優化
- 2.2、其他內核參數優化
- 3、MySQL層相關優化
- 3.1、關于版本選擇
- 3.2、關于最重要的參數選項調整建議
- 3.3、關于Schema設計規范及SQL使用建議
- 3.4、其他建議
- 后記
- Mysql設計與優化專題
- ER圖,數據建模與數據字典
- 數據中設計中的范式與反范式
- 字段類型與合理的選擇字段類型
- 表的垂直拆分和水平拆分
- 詳解慢查詢
- mysql的最佳索引攻略
- 高手詳解SQL性能優化十條經驗
- 優化SQL查詢:如何寫出高性能SQL語句
- MySQL索引原理及慢查詢優化
- 數據庫SQL優化大總結之 百萬級數據庫優化方案
- 數據庫性能優化之SQL語句優化1
- 【重磅干貨】看了此文,Oracle SQL優化文章不必再看!
- MySQL 對于千萬級的大表要怎么優化?
- MySQL 數據庫設計總結
- MYSQL性能優化的最佳20+條經驗
- 數據操作
- 數據語句操作類型
- DCL
- 修改Mysql數據庫名的5種方法
- DML
- 連接
- 連接2
- DDL
- 數據類型
- 字符集
- 表引擎
- 索引
- MySQL理解索引、添加索引的原則
- mysql建索引的幾大原則
- 淺談mysql的索引設計原則以及常見索引的區別
- 常用工具簡介
- QA
- MySQL主機127.0.0.1與localhost區別總結
- 視圖(view)
- 觸發器
- 自定義函數和存儲過程的使用
- 事務(transaction)
- 范式與反范式
- 常用函數
- MySQL 數據類型 詳解
- Mysql數據庫常用分庫和分表方式
- 隔離級別
- 五分鐘搞清楚MySQL事務隔離級別
- mysql隔離級別及事務傳播
- 事務隔離級別和臟讀的快速入門
- 數據庫引擎中的隔離級別
- 事務隔離級別
- Innodb中的事務隔離級別和鎖的關系
- MySQL 四種事務隔離級的說明
- Innodb鎖機制:Next-Key Lock 淺談
- SQL函數和存儲過程的區別
- mongo
- MongoDB設置訪問權限、設置用戶
- redis
- ORM
- mybatis
- $ vs #
- mybatis深入理解(一)之 # 與 $ 區別以及 sql 預編譯
- 電商設計
- B2C電子商務系統研發——概述篇
- B2C電子商務系統研發——商品數據模型設計
- B2C電子商務系統研發——商品模塊E-R圖建模
- B2C電子商務系統研發——商品SKU分析和設計(一)
- B2C電子商務系統研發——商品SKU分析和設計(二)
- 數據庫命名規范--通用