[mysql建索引的幾大原則](http://blog.csdn.net/u013412790/article/details/51612304)
1.選擇唯一性索引
唯一性索引的值是唯一的,可以更快速的通過該索引來確定某條記錄。例如,學生表中學號是具有唯一性的字段。為該字段建立唯一性索引可以很快的確定某個學生的信息。如果使用姓名的話,可能存在同名現象,從而降低查詢速度。
2.為經常需要排序、分組和聯合操作的字段建立索引
經常需要ORDER BY、GROUP BY、DISTINCT和UNION等操作的字段,排序操作會浪費很多時間。如果為其建立索引,可以有效地避免排序操作。
3.為常作為查詢條件的字段建立索引
如果某個字段經常用來做查詢條件,那么該字段的查詢速度會影響整個表的查詢速度。因此,為這樣的字段建立索引,可以提高整個表的查詢速度。
4.限制索引的數目
索引的數目不是越多越好。每個索引都需要占用磁盤空間,索引越多,需要的磁盤空間就越大。修改表時,對索引的重構和更新很麻煩。越多的索引,會使更新表變得很浪費時間。
5.盡量使用數據量少的索引
如果索引的值很長,那么查詢的速度會受到影響。例如,對一個CHAR(100)類型的字段進行全文檢索需要的時間肯定要比對CHAR(10)類型的字段需要的時間要多。
6.盡量使用前綴來索引
如果索引字段的值很長,最好使用值的前綴來索引。例如,TEXT和BLOG類型的字段,進行全文檢索會很浪費時間。如果只檢索字段的前面的若干個字符,這樣可以提高檢索速度。
7.刪除不再使用或者很少使用的索引
表中的數據被大量更新,或者數據的使用方式被改變后,原有的一些索引可能不再需要。[數據庫](http://lib.csdn.net/base/mysql "MySQL知識庫")管理員應當定期找出這些索引,將它們刪除,從而減少索引對更新操作的影響。
8 . 最左前綴匹配原則,非常重要的原則。
[MySQL](http://lib.csdn.net/base/mysql "MySQL知識庫")會一直向右匹配直到遇到范圍查詢(>、 3 and d = 4 如果建立(a,b,c,d)順序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引則都可以用到,a,b,d的順序可以任意調整。
9 .=和in可以亂序。
比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意順序,mysql的查詢優化器會幫你優化成索引可以識別的形式
10 . 盡量選擇區分度高的列作為索引。
區分度的公式是count(distinct col)/count(*),表示字段不重復的比例,比例越大我們掃描的記錄數越少,唯一鍵的區分度是1,而一些狀態、性別字段可能在[大數據](http://lib.csdn.net/base/hadoop "Hadoop知識庫")面前區分度就 是0,那可能有人會問,這個比例有什么經驗值嗎?使用場景不同,這個值也很難確定,一般需要join的字段我們都要求是0.1以上,即平均1條掃描10條 記錄
11 .索引列不能參與計算,保持列“干凈”。
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很簡單,b+樹中存的都是數據表中的字段值,但進行檢索時,需要把所有元素都應用函數才能比較,顯然成本 太大。所以語句應該寫成create_time = unix_timestamp(’2014-05-29’);
12 .盡量的擴展索引,不要新建索引。?
比如表中已經有a的索引,現在要加(a,b)的索引,那么只需要修改原來的索引即可
注意:選擇索引的最終目的是為了使查詢的速度變快。上面給出的原則是最基本的準則,但不能拘泥于上面的準則。讀者要在以后的學習和工作中進行不斷的實踐。根據應用的實際情況進行分析和判斷,選擇最合適的索引方式。
參考:[http://book.51cto.com/art/201012/240955.htm](http://book.51cto.com/art/201012/240955.htm)
- 數據庫
- CAP定理
- 關系模型
- 關系數據庫
- NoSQL
- ODBC
- JDBC
- ODBC、JDBC和四種驅動類型
- mysql
- 安裝與配置
- CentOS 7 安裝 MySQL
- 優化
- 比較全面的MySQL優化參考
- 1、硬件層相關優化
- 1.1、CPU相關
- 1.2、磁盤I/O相關
- 2、系統層相關優化
- 2.1、文件系統層優化
- 2.2、其他內核參數優化
- 3、MySQL層相關優化
- 3.1、關于版本選擇
- 3.2、關于最重要的參數選項調整建議
- 3.3、關于Schema設計規范及SQL使用建議
- 3.4、其他建議
- 后記
- Mysql設計與優化專題
- ER圖,數據建模與數據字典
- 數據中設計中的范式與反范式
- 字段類型與合理的選擇字段類型
- 表的垂直拆分和水平拆分
- 詳解慢查詢
- mysql的最佳索引攻略
- 高手詳解SQL性能優化十條經驗
- 優化SQL查詢:如何寫出高性能SQL語句
- MySQL索引原理及慢查詢優化
- 數據庫SQL優化大總結之 百萬級數據庫優化方案
- 數據庫性能優化之SQL語句優化1
- 【重磅干貨】看了此文,Oracle SQL優化文章不必再看!
- MySQL 對于千萬級的大表要怎么優化?
- MySQL 數據庫設計總結
- MYSQL性能優化的最佳20+條經驗
- 數據操作
- 數據語句操作類型
- DCL
- 修改Mysql數據庫名的5種方法
- DML
- 連接
- 連接2
- DDL
- 數據類型
- 字符集
- 表引擎
- 索引
- MySQL理解索引、添加索引的原則
- mysql建索引的幾大原則
- 淺談mysql的索引設計原則以及常見索引的區別
- 常用工具簡介
- QA
- MySQL主機127.0.0.1與localhost區別總結
- 視圖(view)
- 觸發器
- 自定義函數和存儲過程的使用
- 事務(transaction)
- 范式與反范式
- 常用函數
- MySQL 數據類型 詳解
- Mysql數據庫常用分庫和分表方式
- 隔離級別
- 五分鐘搞清楚MySQL事務隔離級別
- mysql隔離級別及事務傳播
- 事務隔離級別和臟讀的快速入門
- 數據庫引擎中的隔離級別
- 事務隔離級別
- Innodb中的事務隔離級別和鎖的關系
- MySQL 四種事務隔離級的說明
- Innodb鎖機制:Next-Key Lock 淺談
- SQL函數和存儲過程的區別
- mongo
- MongoDB設置訪問權限、設置用戶
- redis
- ORM
- mybatis
- $ vs #
- mybatis深入理解(一)之 # 與 $ 區別以及 sql 預編譯
- 電商設計
- B2C電子商務系統研發——概述篇
- B2C電子商務系統研發——商品數據模型設計
- B2C電子商務系統研發——商品模塊E-R圖建模
- B2C電子商務系統研發——商品SKU分析和設計(一)
- B2C電子商務系統研發——商品SKU分析和設計(二)
- 數據庫命名規范--通用