翻頁請求的思路如下:
(1)找到下一頁的url地址;
(2)調用`yield scrapy.Request`向下一頁發出請求;
```python
class Request(object_ref):
def __init__(self, url, callback=None, method='GET', headers=None, body=None,
cookies=None, meta=None, encoding='utf-8', priority=0,
dont_filter=False, errback=None, flags=None, cb_kwargs=None)
url:url
callback:表示當前的url的響應交給哪個函數去處理
meta:實現數據在不同的解析函數中傳遞,meta默認帶有部分數據,比如下載延遲,請求深度等
dont_filter:默認為False,會過濾請求的url地址,即請求過的url地址不會繼續被請求,
對需要重復請求的url地址可以把它設置為Ture,比如貼吧的翻頁請求,
頁面的數據總是在變化;start_urls中的地址會被反復請求,否則程序不會啟動
method:指定POST或GET請求
headers:接收一個字典,其中不包括cookies
cookies:接收一個字典,專門放置cookies
body:接收json字符串,為POST的數據,發送payload_post請求時使用
```
```python
"""
例: books.py
@Date 2021/4/26
"""
import scrapy
class BooksSpider(scrapy.Spider):
name = 'books'
allowed_domains = ['item.jd.com']
start_urls = ['https://item.jd.com/13201282.html']
def parse(self, response):
yield scrapy.Request(
url='https://item.jd.com/13142372.html',
callback=self.parse_next,
meta={'pre': response.url}
)
def parse_next(self, response):
# 或者 response.meta['pre']
pre = response.meta.get('pre')
current = response.url
print(pre) # https://item.jd.com/13201282.html
print(current) # https://item.jd.com/13142372.html
```
- 爬蟲基本概念
- 爬蟲介紹
- 通用爬蟲與聚焦爬蟲
- 通用爬蟲
- 聚焦爬蟲
- HTTP與HTTPS協議
- HTTP協議簡介
- HTTP的請求與響應
- 客戶端HTTP請求
- 服務端HTTP響應
- requests庫
- requests庫簡介
- requests簡單使用
- 發送帶header的請求
- 發送帶參數的請求
- 案例:下載百度貼吧頁面
- 發送POST請求
- 使用代理
- 為什么要使用代理?
- 正反向代理
- 代理服務器分類
- 使用代理
- cookie和session
- cookie和session的區別
- 爬蟲處理cookie和session
- 使用session登錄網站
- 使用cookie登錄網站
- cookiejar
- 超時和重試
- verify參數忽略CA證書
- URL地址的解碼和編碼
- 數據處理
- json數據處理
- json數據處理方案
- json模塊處理json數據
- jsonpath處理json數據
- 正則表達式
- lxml
- xpath與lxml介紹
- xpathhelper插件
- 案例
- Beautiful Soup
- Beautiful Soup介紹
- 解析器
- CSS選擇器
- 案例
- 四大對象
- 爬蟲與反爬蟲
- 爬蟲與反爬蟲的斗爭
- 服務器反爬的原因
- 什么樣的爬蟲會被反爬
- 反爬領域常見概念
- 反爬的三個方向
- 基于身份識別進行反爬
- 基于爬蟲行為進行反爬
- 基于數據加密進行反爬
- js解析
- chrome瀏覽器使用
- 定位js
- 設置斷點
- js2py
- hashlib
- 有道翻譯案例
- 動態爬取HTML
- 動態HTML
- 獲取Ajax數據的方式
- selenium+driver
- driver定位
- 表單元素操作
- 行為鏈
- cookie操作
- 頁面等待
- 多窗口與頁面切換
- 配置對象
- 拉勾網案例
- 圖片驗證碼識別
- 圖形驗證碼識別技術簡介
- Tesseract
- pytesseract處理圖形驗證碼
- 打碼平臺
- 登錄打碼平臺
- 驗證碼種類
- 多任務-線程
- 繼承Thread創建線程
- 查看線程數量
- 資源共享
- 互斥鎖
- 死鎖
- 避免死鎖
- Queue線程
- 多線程爬蟲
- 多任務-進程
- 創建進程
- 進程池
- 進程間的通信
- Python GIL
- scrapy框架
- scrapy是什么?
- scrapy爬蟲流程
- 創建scrapy項目
- Selector選擇器
- logging
- scrapy shell
- 保存數據
- Item數據建模
- 翻頁請求
- Request
- CrawlSpider
- settings
- 模擬登錄
- 保存文件
- 內置Pipeline
- 自定義Pipeline
- 中間件
- selenium動態加載
- 防止反爬
- 隨機User-Agent
- 隨機IP代理
- settings中的參數
- 隨機延遲
- request.meta常用參數
- 分布式爬蟲
- 分布式原理
- scrapy_redis
- 去重問題
- 分布式爬蟲編寫流程
- CrawSpider改寫成分布式
- scrapy_splash
- scrapy_splash是什么?
- scrapy_splash環境搭建
- APP抓取
- Android模擬器
- appium
- appium是什么?
- appium環境搭建
- appium環境聯調測試
- appium的使用
- 演示項目-抓取抖音app
- 抖音app與appium的聯調測試
- 元素定位
- 抖音appium代碼
- 抓包軟件
- url去重處理