<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                # 層 層結構是AADeepLearning核心組建,定義層方式如下 ~~~ # 網絡結構,數據將從上往下傳播 net = [ { # 層名 "name": "convolutional_1", # 層類型,卷積層 "type": "convolutional", # 卷積核個數 "kernel_number": 1, # 卷積核高 "kernel_height": 2, # 卷積核寬 "kernel_width": 2, # 填充數,1:在圖片最外層填充1圈0,2:填充2圈0,以此類推 "padding": 1, # 滑動步長 "stride": 1, # 權重初始化 gaussian/msra "weight_init": "msra" }, { # 層名 "name": "relu_1", # 層類型, 激活函數層 "type": "relu" }, { # 層名 "name": "pooling_1", # 層類型,池化層 "type": "pooling", # 模式 max(最大池化)/average(平均池化) "mode": "max", # 池化核高 "kernel_height": 2, # 池化核寬 "kernel_width": 2, # 滑動步長 "stride": 1 }, { # 層名,無限制 "name": "flatten_1", # 層類型,將數據展平為適合神經網絡的結構,用于輸入層或者卷積層和全連接層中間。 (60000, 1, 28, 28) ——> (784, 60000) "type": "flatten" }, { # 層名 "name": "fully_connected_1", # 層類型,全連接層 "type": "fully_connected", # 神經元個數 "neurons_number": 256, # 權重初始化方式 msra/xavier/gaussian "weight_init": "msra" }, { # 層名 "name": "relu_2", # 層類型(激活層) 可選,relu,sigmoid,tanh, "type": "relu" }, { # 層名 "name": "fully_connected_2", # 層類型,全連接層 "type": "fully_connected", # 神經元個數 "neurons_number": 10, # 權重初始化方式 msra/xavier/gaussian "weight_init": "msra" }, { # 層名 "name": "softmax_1", # 層類型,分類層,最終輸出十分類的概率分布 "type": "softmax" } ] ~~~ > 前向傳播時:數據將從上往下傳播,例如第一層的輸出是第二層的輸入,第二層的輸出是第三層的輸入,以此類推 > 反向傳播時:數據將從下往上傳播,例如第四層的輸出是第三層的輸入,第三層的輸出是第二層的輸入,以此類推
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看