<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??碼云GVP開源項目 12k star Uniapp+ElementUI 功能強大 支持多語言、二開方便! 廣告
                # 100種物體分類(cifar100) 50,000 張 32x32 彩色訓練圖像數據,以及 10,000 張測試圖像數據,總共分為 100 個類別。 用法: ~~~ import numpy as np import matplotlib.pyplot as plt from AADeepLearning.datasets import cifar100 (x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine') print('x_train shape:', x_train.shape) print('y_train shape:', y_train.shape) print('x_test shape:', x_test.shape) print('y_test shape:', y_test.shape) x_train = np.transpose(x_train, (0,2,3,1)) plt.figure(figsize=(1,1)) plt.imshow(x_train[0]) plt.show() ~~~ ``` #輸出 x_train shape: (50000, 3, 32, 32) y_train shape: (50000, 1) x_test shape: (10000, 3, 32, 32) y_test shape: (10000, 1) ``` * **返回:** * 2 個元組: * **x\_train, x\_test**: uint8 數組表示的 RGB 圖像數據,尺寸為 (num\_samples, 3, 32, 32) 或 (num\_samples, 32, 32, 3),基于`image_data_format`后端設定的`channels_first`或`channels_last`。 * **y\_train, y\_test**: uint8 數組表示的類別標簽(范圍在 0-9 之間的整數),尺寸為 (num\_samples,)。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看