<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 手寫數字(mnist) 訓練集為 60,000 張 28x28 像素灰度圖像,測試集為 10,000 同規格圖像,總共 10 類數字標簽。 ## 用法: ~~~ from AADeepLearning.datasets import mnist import matplotlib.pyplot as plt # mnist數據集已經被劃分成了60,000個訓練集,10,000個測試集的形式,按以下格式調用即可 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 畫出minist 數字 fig = plt.figure() plt.imshow(x_test[0],cmap = 'binary')#黑白顯示 plt.show() print('x_train shape:', x_train.shape) print('y_train shape:', y_train.shape) print('x_test shape:', x_test.shape) print('y_test shape:', y_test.shape) ~~~ ``` #輸出 x_train shape: (60000, 28, 28) y_train shape: (60000,) x_test shape: (10000, 28, 28) y_test shape: (10000,) ``` **返回:** * 2 個元組: * **x\_train, x\_test**: uint8 數組表示的灰度圖像,尺寸為 (num\_samples, 28, 28)。 * **y\_train, y\_test**: uint8 數組表示的數字標簽(范圍在 0-9 之間的整數),尺寸為 (num\_samples,)。
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看