<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # torchvision.models # torchvision.models `torchvision.models`模塊的 子模塊中包含以下模型結構。 - AlexNet - VGG - ResNet - SqueezeNet - DenseNet You can construct a model with random weights by calling its constructor: 你可以使用隨機初始化的權重來創建這些模型。 ``` import torchvision.models as models resnet18 = models.resnet18() alexnet = models.alexnet() squeezenet = models.squeezenet1_0() densenet = models.densenet_161() ``` We provide pre-trained models for the ResNet variants and AlexNet, using the PyTorch torch.utils.model\_zoo. These can constructed by passing pretrained=True: 對于`ResNet variants`和`AlexNet`,我們也提供了預訓練(`pre-trained`)的模型。 ``` import torchvision.models as models #pretrained=True就可以使用預訓練的模型 resnet18 = models.resnet18(pretrained=True) alexnet = models.alexnet(pretrained=True) ``` ImageNet 1-crop error rates (224x224) NetworkTop-1 errorTop-5 errorResNet-1830.2410.92ResNet-3426.708.58ResNet-5023.857.13ResNet-10122.636.44ResNet-15221.695.94Inception v322.556.44AlexNet43.4520.91VGG-1130.9811.37VGG-1330.0710.75VGG-1628.419.62VGG-1927.629.12SqueezeNet 1.041.9019.58SqueezeNet 1.141.8119.38Densenet-12125.357.83Densenet-16924.007.00Densenet-20122.806.43Densenet-16122.356.20## torchvision.models.alexnet(pretrained=False, \*\* kwargs) `AlexNet` 模型結構 [paper地址](https://arxiv.org/abs/1404.5997) - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.resnet18(pretrained=False, \*\* kwargs) 構建一個`resnet18`模型 - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.resnet34(pretrained=False, \*\* kwargs) 構建一個`ResNet-34` 模型. Parameters: pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.resnet50(pretrained=False, \*\* kwargs) 構建一個`ResNet-50`模型 - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.resnet101(pretrained=False, \*\* kwargs) Constructs a ResNet-101 model. - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.resnet152(pretrained=False, \*\* kwargs) Constructs a ResNet-152 model. - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.vgg11(pretrained=False, \*\* kwargs) VGG 11-layer model (configuration “A”) - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.vgg11\_bn(\*\* kwargs) VGG 11-layer model (configuration “A”) with batch normalization ## torchvision.models.vgg13(pretrained=False, \*\* kwargs) VGG 13-layer model (configuration “B”) - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。 ## torchvision.models.vgg13\_bn(\*\* kwargs) VGG 13-layer model (configuration “B”) with batch normalization ## torchvision.models.vgg16(pretrained=False, \*\* kwargs) VGG 16-layer model (configuration “D”) Parameters: pretrained (bool) – If True, returns a model pre-trained on ImageNet ## torchvision.models.vgg16\_bn(\*\* kwargs) VGG 16-layer model (configuration “D”) with batch normalization ## torchvision.models.vgg19(pretrained=False, \*\* kwargs) VGG 19-layer model (configuration “E”) - pretrained (bool) – `True`, 返回在ImageNet上訓練好的模型。## torchvision.models.vgg19\_bn(\*\* kwargs) VGG 19-layer model (configuration ‘E’) with batch normalization
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看