<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                # 1.8. 交叉分解 校驗者: [@peels](https://github.com/apachecn/scikit-learn-doc-zh) 翻譯者: [@Counting stars](https://github.com/apachecn/scikit-learn-doc-zh) 交叉分解模塊主要包含兩個算法族: 偏最小二乘法(PLS)和典型相關分析(CCA)。 這些算法族具有發現兩個多元數據集之間的線性關系的用途: `fit` method (擬合方法)的參數 `X` 和 `Y` 都是 2 維數組。 [![http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_compare_cross_decomposition_0011.png](https://box.kancloud.cn/e9e61b22ad1d1048fedd9c646a548e22_566x377.jpg)](../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html) 交叉分解算法能夠找到兩個矩陣 (X 和 Y) 的基礎關系。它們是對在兩個空間的 協方差結構進行建模的隱變量方法。它們將嘗試在X空間中找到多維方向,該方向能 夠解釋Y空間中最大多維方差方向。PLS回歸特別適用于當預測變量矩陣具有比觀測值 更多的變量以及當X值存在多重共線性時。相比之下,在這些情況下,標準回歸將失敗。 包含在此模塊中的類有:[`PLSRegression`](generated/sklearn.cross_decomposition.PLSRegression.html#sklearn.cross_decomposition.PLSRegression "sklearn.cross_decomposition.PLSRegression"), [`PLSCanonical`](generated/sklearn.cross_decomposition.PLSCanonical.html#sklearn.cross_decomposition.PLSCanonical "sklearn.cross_decomposition.PLSCanonical"), [`CCA`](generated/sklearn.cross_decomposition.CCA.html#sklearn.cross_decomposition.CCA "sklearn.cross_decomposition.CCA"), [`PLSSVD`](generated/sklearn.cross_decomposition.PLSSVD.html#sklearn.cross_decomposition.PLSSVD "sklearn.cross_decomposition.PLSSVD") 示例: - [Compare cross decomposition methods](../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html#sphx-glr-auto-examples-cross-decomposition-plot-compare-cross-decomposition-py)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看