# 外部資源,視頻和談話
校驗者:
翻譯者:
[@巴黎灬メの雨季](https://github.com/apachecn/scikit-learn-doc-zh)
校驗者:
翻譯者:
[@巴黎灬メの雨季](https://github.com/apachecn/scikit-learn-doc-zh)
For written tutorials, see the [Tutorial section](tutorial/index.html#tutorial-menu) of the documentation.
## Scientific Python 的新手?
For those that are still new to the scientific Python ecosystem, we highly recommend the [Python Scientific Lecture Notes](http://www.scipy-lectures.org/). This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic understanding of NumPy arrays is recommended to make the most of scikit-learn.
## 外部教程
There are several online tutorials available which are geared toward specific subject areas:
- [Machine Learning for NeuroImaging in Python](http://nilearn.github.io/)
- [Machine Learning for Astronomical Data Analysis](https://github.com/astroML/sklearn_tutorial)
## 視頻
- An introduction to scikit-learn [Part I](https://conference.scipy.org/scipy2013/tutorial_detail.php?id=107) and [Part II](https://conference.scipy.org/scipy2013/tutorial_detail.php?id=111) at Scipy 2013 by [Gael Varoquaux](http://gael-varoquaux.info), [Jake Vanderplas](http://staff.washington.edu/jakevdp) and [Olivier Grisel](https://twitter.com/ogrisel). Notebooks on [github](https://github.com/jakevdp/sklearn_scipy2013).
- [Introduction to scikit-learn](http://videolectures.net/icml2010_varaquaux_scik/) by [Gael Varoquaux](http://gael-varoquaux.info) at ICML 2010
> A three minute video from a very early stage of the scikit, explaining the basic idea and approach we are following.
- [Introduction to statistical learning with scikit-learn](http://archive.org/search.php?query=scikit-learn)by [Gael Varoquaux](http://gael-varoquaux.info) at SciPy 2011
> An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of machine learning, many algorithms and how to apply them using scikit-learn. The material corresponding is now in the scikit-learn documentation section [關于科學數據處理的統計學習教程](tutorial/statistical_inference/index.html#stat-learn-tut-index).
- [Statistical Learning for Text Classification with scikit-learn and NLTK](http://www.pyvideo.org/video/417/pycon-2011--statistical-machine-learning-for-text)(and [slides](http://www.slideshare.net/ogrisel/statistical-machine-learning-for-text-classification-with-scikitlearn-and-nltk)) by [Olivier Grisel](https://twitter.com/ogrisel) at PyCon 2011
> Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve real-world text classification tasks and compares against cloud-based solutions.
- [Introduction to Interactive Predictive Analytics in Python with scikit-learn](https://www.youtube.com/watch?v=Zd5dfooZWG4)by [Olivier Grisel](https://twitter.com/ogrisel) at PyCon 2012
> 3-hours long introduction to prediction tasks using scikit-learn.
- [scikit-learn - Machine Learning in Python](https://newcircle.com/s/post/1152/scikit-learn_machine_learning_in_python)by [Jake Vanderplas](http://staff.washington.edu/jakevdp) at the 2012 PyData workshop at Google
> Interactive demonstration of some scikit-learn features. 75 minutes.
- [scikit-learn tutorial](https://vimeo.com/53062607) by [Jake Vanderplas](http://staff.washington.edu/jakevdp) at PyData NYC 2012
> Presentation using the online tutorial, 45 minutes.
- scikit-learn 0.19 中文文檔
- 用戶指南
- 1. 監督學習
- 1.1. 廣義線性模型
- 1.2. 線性和二次判別分析
- 1.3. 內核嶺回歸
- 1.4. 支持向量機
- 1.5. 隨機梯度下降
- 1.6. 最近鄰
- 1.7. 高斯過程
- 1.8. 交叉分解
- 1.9. 樸素貝葉斯
- 1.10. 決策樹
- 1.11. 集成方法
- 1.12. 多類和多標簽算法
- 1.13. 特征選擇
- 1.14. 半監督學習
- 1.15. 等式回歸
- 1.16. 概率校準
- 1.17. 神經網絡模型(有監督)
- 2. 無監督學習
- 2.1. 高斯混合模型
- 2.2. 流形學習
- 2.3. 聚類
- 2.4. 雙聚類
- 2.5. 分解成分中的信號(矩陣分解問題)
- 2.6. 協方差估計
- 2.7. 經驗協方差
- 2.8. 收斂協方差
- 2.9. 稀疏逆協方差
- 2.10. Robust 協方差估計
- 2.11. 新奇和異常值檢測
- 2.12. 密度估計
- 2.13. 神經網絡模型(無監督)
- 3. 模型選擇和評估
- 3.1. 交叉驗證:評估估算器的表現
- 3.2. 調整估計器的超參數
- 3.3. 模型評估: 量化預測的質量
- 3.4. 模型持久化
- 3.5. 驗證曲線: 繪制分數以評估模型
- 4. 數據集轉換
- 4.1. Pipeline(管道)和 FeatureUnion(特征聯合): 合并的評估器
- 4.2. 特征提取
- 4.3. 預處理數據
- 4.4. 無監督降維
- 4.5. 隨機投影
- 4.6. 內核近似
- 4.7. 成對的矩陣, 類別和核函數
- 4.8. 預測目標 (y) 的轉換
- 5. 數據集加載工具
- 6. 大規模計算的策略: 更大量的數據
- 7. 計算性能
- 教程
- 使用 scikit-learn 介紹機器學習
- 關于科學數據處理的統計學習教程
- 機器學習: scikit-learn 中的設置以及預估對象
- 監督學習:從高維觀察預測輸出變量
- 模型選擇:選擇估計量及其參數
- 無監督學習: 尋求數據表示
- 把它們放在一起
- 尋求幫助
- 處理文本數據
- 選擇正確的評估器(estimator)
- 外部資源,視頻和談話