<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                # 4.4. 無監督降維 校驗者: [@程威](https://github.com/apachecn/scikit-learn-doc-zh) 翻譯者: [@十四號](https://github.com/apachecn/scikit-learn-doc-zh) 如果你的特征數量很多, 在監督步驟之前, 可以通過無監督的步驟來減少特征. 很多的 [無監督學習](../unsupervised_learning.html#unsupervised-learning) 方法實現了一個名為 `transform` 的方法, 它可以用來降低維度. 下面我們將討論大量使用這種模式的兩個具體示例. ## 4.4.1. PCA: 主成份分析 [`decomposition.PCA`](generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA "sklearn.decomposition.PCA") 尋找能夠捕捉原始特征的差異的特征的組合. 請參閱 [分解成分中的信號(矩陣分解問題)](decomposition.html#decompositions). **示例** - ref:‘sphx\_glr\_auto\_examples\_applications\_plot\_face\_recognition.py’ ## 4.4.2. 隨機投影 模塊: `random_projection` 提供了幾種用于通過隨機投影減少數據的工具. 請參閱文檔的相關部分: [隨機投影](random_projection.html#random-projection). **示例** - [The Johnson-Lindenstrauss bound for embedding with random projections](../auto_examples/plot_johnson_lindenstrauss_bound.html#sphx-glr-auto-examples-plot-johnson-lindenstrauss-bound-py) ## 4.4.3. 特征聚集 [`cluster.FeatureAgglomeration`](generated/sklearn.cluster.FeatureAgglomeration.html#sklearn.cluster.FeatureAgglomeration "sklearn.cluster.FeatureAgglomeration") 應用 [層次聚類](clustering.html#hierarchical-clustering) 將行為類似的特征分組在一起. **示例** - [Feature agglomeration vs. univariate selection](../auto_examples/cluster/plot_feature_agglomeration_vs_univariate_selection.html#sphx-glr-auto-examples-cluster-plot-feature-agglomeration-vs-univariate-selection-py) - [Feature agglomeration](../auto_examples/cluster/plot_digits_agglomeration.html#sphx-glr-auto-examples-cluster-plot-digits-agglomeration-py) **特征縮放** 請注意,如果功能具有明顯不同的縮放或統計屬性,則 [`cluster.FeatureAgglomeration`](generated/sklearn.cluster.FeatureAgglomeration.html#sklearn.cluster.FeatureAgglomeration "sklearn.cluster.FeatureAgglomeration")可能無法捕獲相關特征之間的關系.使用一個 [`preprocessing.StandardScaler`](generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler "sklearn.preprocessing.StandardScaler") 可以在這些 設置中使用.
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看