# 3. 模型選擇和評估
- [3.1. 交叉驗證:評估估算器的表現](modules/cross_validation.html)
- [3.1.1. 計算交叉驗證的指標](modules/cross_validation.html#id2)
- [3.1.1.1. cross\_validate 函數和多度量評估](modules/cross_validation.html#cross-validate)
- [3.1.1.2. 通過交叉驗證獲取預測](modules/cross_validation.html#id3)
- [3.1.2. 交叉驗證迭代器](modules/cross_validation.html#id4)
- [3.1.3. 交叉驗證迭代器–循環遍歷數據](modules/cross_validation.html#iid-cv)
- [3.1.3.1. K 折](modules/cross_validation.html#k)
- [3.1.3.2. 重復 K-折交叉驗證](modules/cross_validation.html#id6)
- [3.1.3.3. 留一交叉驗證 (LOO)](modules/cross_validation.html#loo)
- [3.1.3.4. 留 P 交叉驗證 (LPO)](modules/cross_validation.html#p-lpo)
- [3.1.3.5. 隨機排列交叉驗證 a.k.a. Shuffle & Split](modules/cross_validation.html#a-k-a-shuffle-split)
- [3.1.4. 基于類標簽、具有分層的交叉驗證迭代器](modules/cross_validation.html#id7)
- [3.1.4.1. 分層 k 折](modules/cross_validation.html#id8)
- [3.1.4.2. 分層隨機 Split](modules/cross_validation.html#split)
- [3.1.5. 用于分組數據的交叉驗證迭代器](modules/cross_validation.html#group-cv)
- [3.1.5.1. 組 k-fold](modules/cross_validation.html#k-fold)
- [3.1.5.2. 留一組交叉驗證](modules/cross_validation.html#id10)
- [3.1.5.3. 留 P 組交叉驗證](modules/cross_validation.html#p)
- [3.1.5.4. Group Shuffle Split](modules/cross_validation.html#group-shuffle-split)
- [3.1.6. 預定義的折疊 / 驗證集](modules/cross_validation.html#id11)
- [3.1.7. 交叉驗證在時間序列數據中應用](modules/cross_validation.html#timeseries-cv)
- [3.1.7.1. 時間序列分割](modules/cross_validation.html#id13)
- [3.1.8. A note on shuffling](modules/cross_validation.html#a-note-on-shuffling)
- [3.1.9. 交叉驗證和模型選擇](modules/cross_validation.html#id14)
- [3.2. 調整估計器的超參數](modules/grid_search.html)
- [3.2.1. 網格追蹤法–窮盡的網格搜索](modules/grid_search.html#id3)
- [3.2.2. 隨機參數優化](modules/grid_search.html#randomized-parameter-search)
- [3.2.3. 參數搜索技巧](modules/grid_search.html#grid-search-tips)
- [3.2.3.1. 指定目標度量](modules/grid_search.html#gridsearch-scoring)
- [3.2.3.2. 為評估指定多個指標](modules/grid_search.html#multimetric-grid-search)
- [3.2.3.3. 復合估計和參數空間](modules/grid_search.html#id16)
- [3.2.3.4. 模型選擇:開發和評估](modules/grid_search.html#id18)
- [3.2.3.5. 并行機制](modules/grid_search.html#id19)
- [3.2.3.6. 對故障的魯棒性](modules/grid_search.html#id20)
- [3.2.4. 暴力參數搜索的替代方案](modules/grid_search.html#alternative-cv)
- [3.2.4.1. 模型特定交叉驗證](modules/grid_search.html#id22)
- [3.2.4.1.1. `sklearn.linear_model`.ElasticNetCV](modules/generated/sklearn.linear_model.ElasticNetCV.html)
- [3.2.4.1.2. `sklearn.linear_model`.LarsCV](modules/generated/sklearn.linear_model.LarsCV.html)
- [3.2.4.1.3. `sklearn.linear_model`.LassoCV](modules/generated/sklearn.linear_model.LassoCV.html)
- [3.2.4.1.3.1. Examples using `sklearn.linear_model.LassoCV`](modules/generated/sklearn.linear_model.LassoCV.html#examples-using-sklearn-linear-model-lassocv)
- [3.2.4.1.4. `sklearn.linear_model`.LassoLarsCV](modules/generated/sklearn.linear_model.LassoLarsCV.html)
- [3.2.4.1.4.1. Examples using `sklearn.linear_model.LassoLarsCV`](modules/generated/sklearn.linear_model.LassoLarsCV.html#examples-using-sklearn-linear-model-lassolarscv)
- [3.2.4.1.5. `sklearn.linear_model`.LogisticRegressionCV](modules/generated/sklearn.linear_model.LogisticRegressionCV.html)
- [3.2.4.1.6. `sklearn.linear_model`.MultiTaskElasticNetCV](modules/generated/sklearn.linear_model.MultiTaskElasticNetCV.html)
- [3.2.4.1.7. `sklearn.linear_model`.MultiTaskLassoCV](modules/generated/sklearn.linear_model.MultiTaskLassoCV.html)
- [3.2.4.1.8. `sklearn.linear_model`.OrthogonalMatchingPursuitCV](modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html)
- [3.2.4.1.8.1. Examples using `sklearn.linear_model.OrthogonalMatchingPursuitCV`](modules/generated/sklearn.linear_model.OrthogonalMatchingPursuitCV.html#examples-using-sklearn-linear-model-orthogonalmatchingpursuitcv)
- [3.2.4.1.9. `sklearn.linear_model`.RidgeCV](modules/generated/sklearn.linear_model.RidgeCV.html)
- [3.2.4.1.9.1. Examples using `sklearn.linear_model.RidgeCV`](modules/generated/sklearn.linear_model.RidgeCV.html#examples-using-sklearn-linear-model-ridgecv)
- [3.2.4.1.10. `sklearn.linear_model`.RidgeClassifierCV](modules/generated/sklearn.linear_model.RidgeClassifierCV.html)
- [3.2.4.2. 信息標準](modules/grid_search.html#id23)
- [3.2.4.2.1. `sklearn.linear_model`.LassoLarsIC](modules/generated/sklearn.linear_model.LassoLarsIC.html)
- [3.2.4.2.1.1. Examples using `sklearn.linear_model.LassoLarsIC`](modules/generated/sklearn.linear_model.LassoLarsIC.html#examples-using-sklearn-linear-model-lassolarsic)
- [3.2.4.3. 出袋估計](modules/grid_search.html#out-of-bag)
- [3.2.4.3.1. `sklearn.ensemble`.RandomForestClassifier](modules/generated/sklearn.ensemble.RandomForestClassifier.html)
- [3.2.4.3.1.1. Examples using `sklearn.ensemble.RandomForestClassifier`](modules/generated/sklearn.ensemble.RandomForestClassifier.html#examples-using-sklearn-ensemble-randomforestclassifier)
- [3.2.4.3.2. `sklearn.ensemble`.RandomForestRegressor](modules/generated/sklearn.ensemble.RandomForestRegressor.html)
- [3.2.4.3.2.1. Examples using `sklearn.ensemble.RandomForestRegressor`](modules/generated/sklearn.ensemble.RandomForestRegressor.html#examples-using-sklearn-ensemble-randomforestregressor)
- [3.2.4.3.3. `sklearn.ensemble`.ExtraTreesClassifier](modules/generated/sklearn.ensemble.ExtraTreesClassifier.html)
- [3.2.4.3.3.1. Examples using `sklearn.ensemble.ExtraTreesClassifier`](modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#examples-using-sklearn-ensemble-extratreesclassifier)
- [3.2.4.3.4. `sklearn.ensemble`.ExtraTreesRegressor](modules/generated/sklearn.ensemble.ExtraTreesRegressor.html)
- [3.2.4.3.4.1. Examples using `sklearn.ensemble.ExtraTreesRegressor`](modules/generated/sklearn.ensemble.ExtraTreesRegressor.html#examples-using-sklearn-ensemble-extratreesregressor)
- [3.2.4.3.5. `sklearn.ensemble`.GradientBoostingClassifier](modules/generated/sklearn.ensemble.GradientBoostingClassifier.html)
- [3.2.4.3.5.1. Examples using `sklearn.ensemble.GradientBoostingClassifier`](modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#examples-using-sklearn-ensemble-gradientboostingclassifier)
- [3.2.4.3.6. `sklearn.ensemble`.GradientBoostingRegressor](modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
- [3.2.4.3.6.1. Examples using `sklearn.ensemble.GradientBoostingRegressor`](modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#examples-using-sklearn-ensemble-gradientboostingregressor)
- [3.3. 模型評估: 量化預測的質量](modules/model_evaluation.html)
- [3.3.1. `scoring` 參數: 定義模型評估規則](modules/model_evaluation.html#scoring)
- [3.3.1.1. 常見場景: 預定義值](modules/model_evaluation.html#id2)
- [3.3.1.2. 根據 metric 函數定義您的評分策略](modules/model_evaluation.html#metric)
- [3.3.1.3. 實現自己的記分對象](modules/model_evaluation.html#diy-scoring)
- [3.3.1.4. 使用多個指數評估](modules/model_evaluation.html#multimetric-scoring)
- [3.3.2. 分類指標](modules/model_evaluation.html#classification-metrics)
- [3.3.2.1. 從二分到多分類和 multilabel](modules/model_evaluation.html#multilabel)
- [3.3.2.2. 精確度得分](modules/model_evaluation.html#accuracy-score)
- [3.3.2.3. Cohen’s kappa](modules/model_evaluation.html#cohen-s-kappa)
- [3.3.2.4. 混淆矩陣](modules/model_evaluation.html#confusion-matrix)
- [3.3.2.5. 分類報告](modules/model_evaluation.html#classification-report)
- [3.3.2.6. 漢明損失](modules/model_evaluation.html#hamming-loss)
- [3.3.2.7. Jaccard 相似系數 score](modules/model_evaluation.html#jaccard-score)
- [3.3.2.8. 精準,召回和 F-measures](modules/model_evaluation.html#f-measures)
- [3.3.2.8.1. 二分類](modules/model_evaluation.html#id14)
- [3.3.2.8.2. 多類和多標簽分類](modules/model_evaluation.html#id15)
- [3.3.2.9. Hinge loss](modules/model_evaluation.html#hinge-loss)
- [3.3.2.10. Log 損失](modules/model_evaluation.html#log)
- [3.3.2.11. 馬修斯相關系數](modules/model_evaluation.html#matthews-corrcoef)
- [3.3.2.12. Receiver operating characteristic (ROC)](modules/model_evaluation.html#receiver-operating-characteristic-roc)
- [3.3.2.13. 零一損失](modules/model_evaluation.html#zero-one-loss)
- [3.3.2.14. Brier 分數損失](modules/model_evaluation.html#brier)
- [3.3.3. 多標簽排名指標](modules/model_evaluation.html#multilabel-ranking-metrics)
- [3.3.3.1. 覆蓋誤差](modules/model_evaluation.html#coverage-error)
- [3.3.3.2. 標簽排名平均精度](modules/model_evaluation.html#label-ranking-average-precision)
- [3.3.3.3. 排序損失](modules/model_evaluation.html#label-ranking-loss)
- [3.3.4. 回歸指標](modules/model_evaluation.html#regression-metrics)
- [3.3.4.1. 解釋方差得分](modules/model_evaluation.html#explained-variance-score)
- [3.3.4.2. 平均絕對誤差](modules/model_evaluation.html#mean-absolute-error)
- [3.3.4.3. 均方誤差](modules/model_evaluation.html#mean-squared-error)
- [3.3.4.4. 均方誤差對數](modules/model_evaluation.html#mean-squared-log-error)
- [3.3.4.5. 中位絕對誤差](modules/model_evaluation.html#median-absolute-error)
- [3.3.4.6. R2 score, 可決系數](modules/model_evaluation.html#r2-score)
- [3.3.5. 聚類指標](modules/model_evaluation.html#clustering-metrics)
- [3.3.6. 虛擬估計](modules/model_evaluation.html#dummy-estimators)
- [3.4. 模型持久化](modules/model_persistence.html)
- [3.4.1. 持久化示例](modules/model_persistence.html#id2)
- [3.4.2. 安全性和可維護性的局限性](modules/model_persistence.html#persistence-limitations)
- [3.5. 驗證曲線: 繪制分數以評估模型](modules/learning_curve.html)
- [3.5.1. 驗證曲線](modules/learning_curve.html#validation-curve)
- [3.5.2. 學習曲線](modules/learning_curve.html#learning-curve)
- scikit-learn 0.19 中文文檔
- 用戶指南
- 1. 監督學習
- 1.1. 廣義線性模型
- 1.2. 線性和二次判別分析
- 1.3. 內核嶺回歸
- 1.4. 支持向量機
- 1.5. 隨機梯度下降
- 1.6. 最近鄰
- 1.7. 高斯過程
- 1.8. 交叉分解
- 1.9. 樸素貝葉斯
- 1.10. 決策樹
- 1.11. 集成方法
- 1.12. 多類和多標簽算法
- 1.13. 特征選擇
- 1.14. 半監督學習
- 1.15. 等式回歸
- 1.16. 概率校準
- 1.17. 神經網絡模型(有監督)
- 2. 無監督學習
- 2.1. 高斯混合模型
- 2.2. 流形學習
- 2.3. 聚類
- 2.4. 雙聚類
- 2.5. 分解成分中的信號(矩陣分解問題)
- 2.6. 協方差估計
- 2.7. 經驗協方差
- 2.8. 收斂協方差
- 2.9. 稀疏逆協方差
- 2.10. Robust 協方差估計
- 2.11. 新奇和異常值檢測
- 2.12. 密度估計
- 2.13. 神經網絡模型(無監督)
- 3. 模型選擇和評估
- 3.1. 交叉驗證:評估估算器的表現
- 3.2. 調整估計器的超參數
- 3.3. 模型評估: 量化預測的質量
- 3.4. 模型持久化
- 3.5. 驗證曲線: 繪制分數以評估模型
- 4. 數據集轉換
- 4.1. Pipeline(管道)和 FeatureUnion(特征聯合): 合并的評估器
- 4.2. 特征提取
- 4.3. 預處理數據
- 4.4. 無監督降維
- 4.5. 隨機投影
- 4.6. 內核近似
- 4.7. 成對的矩陣, 類別和核函數
- 4.8. 預測目標 (y) 的轉換
- 5. 數據集加載工具
- 6. 大規模計算的策略: 更大量的數據
- 7. 計算性能
- 教程
- 使用 scikit-learn 介紹機器學習
- 關于科學數據處理的統計學習教程
- 機器學習: scikit-learn 中的設置以及預估對象
- 監督學習:從高維觀察預測輸出變量
- 模型選擇:選擇估計量及其參數
- 無監督學習: 尋求數據表示
- 把它們放在一起
- 尋求幫助
- 處理文本數據
- 選擇正確的評估器(estimator)
- 外部資源,視頻和談話