<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                > Logistic Regression,在線性回歸的基礎上,增加Sigmoid函數,解決**分類**問題。 > 本課學習時長評估:2小時。 ## 邏輯回歸定義 邏輯回歸是一個分類模型,其思想是基于線性回歸,屬于廣義線性回歸模型。 ## 邏輯回歸公式 * 預測函數 `$ h_\theta(x) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-\theta^Tx}} $` `$ z = \theta_0 + \theta_1x_1 + \theta_2x_2... + \theta_nx_n = \theta^Tx $` * Sigmoid函數 `$ y= \frac{1}{1 + e^{-z}} $` 邏輯回歸算法,是將線性函數的結果映射到了sigmoid函數中,然后對sigmoid作為預測函數,求出成本函數,然后最小化成本,得出w,b超參數。 * 損失函數 LR的損失函數為: 負的對數損失函數。 邏輯回歸**假設樣本服從伯努利分布(0-1分布)**,然后求得滿足該分布的似然函數,接著取對數求極值最小化負的似然函數 ## 邏輯回歸的求解過程 [白話簡介視頻鏈接](https://www.bilibili.com/video/BV1Cx411d7MU) [公式推導視頻鏈接](https://www.bilibili.com/video/BV1As411j7zw)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看