與前面介紹的鎖和volatile相比較,**對final域的讀和寫更像是普通的變量訪問**。對于final域,編譯器和處理器要遵守兩個重排序規則:
* 在構造函數內對一個final域的寫入,與隨后把這個被構造對象的引用賦值給一個引用變量,這兩個操作之間不能重排序。
* 初次讀一個包含final域的對象的引用,與隨后初次讀這個final域,這兩個操作之間不能重排序。
下面,我們通過一些示例性的代碼來分別說明這兩個規則:
```
public class FinalExample {
int i; //普通變量
final int j; //final變量
static FinalExample obj;
public void FinalExample () { //構造函數
i = 1; //寫普通域
j = 2; //寫final域
}
public static void writer () { //寫線程A執行
obj = new FinalExample ();
}
public static void reader () { //讀線程B執行
FinalExample object = obj; //讀對象引用
int a = object.i; //讀普通域
int b = object.j; //讀final域
}
}
```
這里假設一個線程A執行writer ()方法,隨后另一個線程B執行reader ()方法。下面我們通過這兩個線程的交互來說明這兩個規則。
## 寫final域的重排序規則
寫final域的重排序規則禁止把final域的寫重排序到構造函數之外。這個規則的實現包含下面2個方面:
* JMM禁止編譯器把final域的寫重排序到構造函數之外。
* 編譯器會在final域的寫之后,構造函數return之前,插入一個StoreStore屏障。這個屏障禁止處理器把final域的寫重排序到構造函數之外。
現在讓我們分析writer ()方法。writer ()方法只包含一行代碼:`finalExample = new FinalExample ()`。這行代碼包含兩個步驟:
* 構造一個FinalExample類型的對象;
* 把這個對象的引用賦值給引用變量obj。
假設線程B讀對象引用與讀對象的成員域之間沒有重排序(馬上會說明為什么需要這個假設),下圖是一種可能的執行時序:

在上圖中,寫普通域的操作被編譯器重排序到了構造函數之外,讀線程B錯誤的讀取了普通變量i初始化之前的值。而寫final域的操作,被寫final域的重排序規則“限定”在了構造函數之內,讀線程B正確的讀取了final變量初始化之后的值。
寫final域的重排序規則可以確保:在對象引用為任意線程可見之前,對象的final域已經被正確初始化過了,而普通域不具有這個保障。以上圖為例,在讀線程B“看到”對象引用obj時,很可能obj對象還沒有構造完成(對普通域i的寫操作被重排序到構造函數外,此時初始值2還沒有寫入普通域i)。
## 讀final域的重排序規則
讀final域的重排序規則如下:
在一個線程中,初次讀對象引用與初次讀該對象包含的final域,JMM禁止處理器重排序這兩個操作(注意,這個規則僅僅針對處理器)。**編譯器會在讀final域操作的前面插入一個LoadLoad屏障**。
初次讀對象引用與初次讀該對象包含的final域,這兩個操作之間存在間接依賴關系。由于編譯器遵守間接依賴關系,因此編譯器不會重排序這兩個操作。大多數處理器也會遵守間接依賴,大多數處理器也不會重排序這兩個操作。但有少數處理器允許對存在間接依賴關系的操作做重排序(比如alpha處理器),這個規則就是專門用來針對這種處理器。
reader()方法包含三個操作:
* 初次讀引用變量obj;
* 初次讀引用變量obj指向對象的普通域j。
* 初次讀引用變量obj指向對象的final域i。
現在我們假設寫線程A沒有發生任何重排序,同時程序在不遵守間接依賴的處理器上執行,下面是一種可能的執行時序:

在上圖中,讀對象的普通域的操作被處理器重排序到讀對象引用之前。讀普通域時,該域還沒有被寫線程A寫入,這是一個錯誤的讀取操作。而讀final域的重排序規則會把讀對象final域的操作“限定”在讀對象引用之后,此時該final域已經被A線程初始化過了,這是一個正確的讀取操作。
讀final域的重排序規則可以確保:**在讀一個對象的final域之前,一定會先讀包含這個final域的對象的引用**。在這個示例程序中,如果該引用不為null,那么引用對象的final域一定已經被A線程初始化過了。
## 如果final域是引用類型
上面我們看到的final域是基礎數據類型,下面讓我們看看如果final域是引用類型,將會有什么效果?
請看下列示例代碼:
```
public class FinalReferenceExample {
final int[] intArray; //final是引用類型
static FinalReferenceExample obj;
public FinalReferenceExample () { //構造函數
intArray = new int[1]; //1
intArray[0] = 1; //2
}
public static void writerOne () { //寫線程A執行
obj = new FinalReferenceExample (); //3
}
public static void writerTwo () { //寫線程B執行
obj.intArray[0] = 2; //4
}
public static void reader () { //讀線程C執行
if (obj != null) { //5
int temp1 = obj.intArray[0]; //6
}
}
}
```
這里final域為一個引用類型,它引用一個int型的數組對象。對于引用類型,寫final域的重排序規則對編譯器和處理器增加了如下約束:
在構造函數內對一個final引用的對象的成員域的寫入,與隨后在構造函數外把這個被構造對象的引用賦值給一個引用變量,這**兩個操作之間不能重排序**。
對上面的示例程序,我們假設首先線程A執行writerOne()方法,執行完后線程B執行writerTwo()方法,執行完后線程C執行reader ()方法。下面是一種可能的線程執行時序:

在上圖中,1是對final域的寫入,2是對這個final域引用的對象的成員域的寫入,3是把被構造的對象的引用賦值給某個引用變量。這里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM可以確保讀線程C至少能看到寫線程A在構造函數中對final引用對象的成員域的寫入。即C至少能看到數組下標0的值為1。而寫線程B對數組元素的寫入,讀線程C可能看的到,也可能看不到。JMM不保證線程B的寫入對讀線程C可見,因為寫線程B和讀線程C之間存在數據競爭,此時的執行結果不可預知。
如果想要確保讀線程C看到寫線程B對數組元素的寫入,寫線程B和讀線程C之間需要使用同步原語(lock或volatile)來確保內存可見性。
## 為什么final引用不能從構造函數內“逸出”
前面我們提到過,寫final域的重排序規則可以確保:在引用變量為任意線程可見之前,該引用變量指向的對象的final域已經在構造函數中被正確初始化過了。其實要得到這個效果,還需要一個保證:**在構造函數內部,不能讓這個被構造對象的引用為其他線程可見,也就是對象引用不能在構造函數中“逸出”**。為了說明問題,讓我們來看下面示例代碼:
```
public class FinalReferenceEscapeExample {
final int i;
static FinalReferenceEscapeExample obj;
public FinalReferenceEscapeExample () {
i = 1; //1寫final域
obj = this; //2 this引用在此“逸出”
}
public static void writer() {
new FinalReferenceEscapeExample ();
}
public static void reader {
if (obj != null) { //3
int temp = obj.i; //4
}
}
}
```
假設一個線程A執行writer()方法,另一個線程B執行reader()方法。這里的操作2使得對象還未完成構造前就為線程B可見。即使這里的操作2是構造函數的最后一步,且即使在程序中操作2排在操作1后面,執行read()方法的線程仍然可能無法看到final域被初始化后的值,因為這里的操作1和操作2之間可能被重排序。實際的執行時序可能如下圖所示:

從上圖我們可以看出:在構造函數返回前,被構造對象的引用不能為其他線程可見,因為此時的final域可能還沒有被初始化。在構造函數返回后,任意線程都將保證能看到final域正確初始化之后的值。
## final語義在處理器中的實現
現在我們以x86處理器為例,說明final語義在處理器中的具體實現。
上面我們提到,寫final域的重排序規則會要求譯編器在final域的寫之后,構造函數return之前,插入一個StoreStore障屏。讀final域的重排序規則要求編譯器在讀final域的操作前面插入一個LoadLoad屏障。
由于x86處理器不會對寫-寫操作做重排序,所以在x86處理器中,寫final域需要的StoreStore障屏會被省略掉。同樣,由于x86處理器不會對存在間接依賴關系的操作做重排序,所以在x86處理器中,讀final域需要的LoadLoad屏障也會被省略掉。**也就是說在x86處理器中,final域的讀/寫不會插入任何內存屏障**!
## JSR-133為什么要增強final的語義
**在舊的Java內存模型中 ,最嚴重的一個缺陷就是線程可能看到final域的值會改變**。比如,一個線程當前看到一個整形final域的值為0(還未初始化之前的默認值),過一段時間之后這個線程再去讀這個final域的值時,卻發現值變為了1(被某個線程初始化之后的值)。最常見的例子就是在舊的Java內存模型中,String的值可能會改變。
為了修補這個漏洞,JSR-133專家組增強了final的語義。通過為final域增加寫和讀重排序規則,可以為java程序員提供初始化安全保證:只要對象是正確構造的(被構造對象的引用在構造函數中沒有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保證**任意線程都能看到這個final域在構造函數中被初始化之后的值**。
- java
- 設計模式
- 設計模式總覽
- 設計原則
- 工廠方法模式
- 抽象工廠模式
- 單例模式
- 建造者模式
- 原型模式
- 適配器模式
- 裝飾者模式
- 代理模式
- 外觀模式
- 橋接模式
- 組合模式
- 享元模式
- 策略模式
- 模板方法模式
- 觀察者模式
- 迭代子模式
- 責任鏈模式
- 命令模式
- 備忘錄模式
- 狀態模式
- 訪問者模式
- 中介者模式
- 解釋器模式
- 附錄
- JVM相關
- JVM內存結構
- Java虛擬機的內存組成以及堆內存介紹
- Java堆和棧
- 附錄-數據結構的堆棧和內存分配的堆區棧區的區別
- Java內存之Java 堆
- Java內存之虛擬機和內存區域概述
- Java 內存之方法區和運行時常量池
- Java 內存之直接內存(堆外內存)
- JAVA內存模型
- Java內存模型介紹
- 內存模型如何解決緩存一致性問題
- 深入理解Java內存模型——基礎
- 深入理解Java內存模型——重排序
- 深入理解Java內存模型——順序一致性
- 深入理解Java內存模型——volatile
- 深入理解Java內存模型——鎖
- 深入理解Java內存模型——final
- 深入理解Java內存模型——總結
- 內存可見性
- JAVA對象模型
- JVM內存結構 VS Java內存模型 VS Java對象模型
- Java的對象模型
- Java的對象頭
- HotSpot虛擬機
- HotSpot虛擬機對象探秘
- 深入分析Java的編譯原理
- Java虛擬機的鎖優化技術
- 對象和數組并不是都在堆上分配內存的
- 垃圾回收
- JVM內存管理及垃圾回收
- JVM 垃圾回收器工作原理及使用實例介紹
- JVM內存回收理論與實現(對象存活的判定)
- JVM參數及調優
- CMS GC日志分析
- JVM實用參數(一)JVM類型以及編譯器模式
- JVM實用參數(二)參數分類和即時(JIT)編譯器診斷
- JVM實用參數(三)打印所有XX參數及值
- JVM實用參數(四)內存調優
- JVM實用參數(五)新生代垃圾回收
- JVM實用參數(六) 吞吐量收集器
- JVM實用參數(七)CMS收集器
- JVM實用參數(八)GC日志
- Java性能調優原則
- JVM 優化經驗總結
- 面試題整理
- 面試題1
- java日志規約
- Spring安全
- OAtuth2.0簡介
- Spring Session 簡介(一)
- Spring Session 簡介(二)
- Spring Session 簡介(三)
- Spring Security 簡介(一)
- Spring Security 簡介(二)
- Spring Security 簡介(三)
- Spring Security 簡介(四)
- Spring Security 簡介(五)
- Spring Security Oauth2 (一)
- Spring Security Oauth2 (二)
- Spring Security Oauth2 (三)
- SpringBoot
- Shiro
- Shiro和Spring Security對比
- Shiro簡介
- Session、Cookie和Cache
- Web Socket
- Spring WebFlux