## 為什么需要Sharded cluster?
MongoDB目前3大核心優勢:『靈活模式』+ 『高可用性』 + 『可擴展性』,通過json文檔來實現靈活模式,通過[復制集](https://yq.aliyun.com/articles/64?spm=0.0.0.0.9jrPm8)來保證高可用,通過Sharded cluster來保證可擴展性。
當MongoDB復制集遇到下面的業務場景時,你就需要考慮使用Sharded cluster
* 存儲容量需求超出單機磁盤容量
* 活躍的數據集超出單機內存容量,導致很多請求都要從磁盤讀取數據,影響性能
* 寫IOPS超出單個MongoDB節點的寫服務能力

如上圖所示,Sharding Cluster使得集合的數據可以分散到多個Shard(復制集或者單個Mongod節點)存儲,使得MongoDB具備了橫向擴展(Scale out)的能力,豐富了MongoDB的應用場景。
## Sharded cluster架構
Sharded cluster由Shard、Mongos和Config server 3個組件構成。

Mongos是Sharded cluster的訪問入口,強烈建議所有的管理操作、讀寫操作都通過mongos來完成,以保證cluster多個組件處于一致的狀態。
Mongos本身并不持久化數據,Sharded cluster所有的元數據都會存儲到Config Server(下一節詳細介紹),而用戶的數據則會分散存儲到各個shard。Mongos啟動后,會從config server加載元數據,開始提供服務,將用戶的請求正確路由到對應的Shard。
## 數據分布策略
Sharded cluster支持將單個集合的數據分散存儲在多個shard上,用戶可以指定根據集合內文檔的某個字段即shard key來分布數據,目前主要支持2種數據分布的策略,范圍分片(Range based sharding)或hash分片(Hash based sharding)。
### 范圍分片

如上圖所示,集合根據x字段來分片,x的取值范圍為[minKey, maxKey](x為整型,這里的minKey、maxKey為整型的最小值和最大值),將整個取值范圍劃分為多個chunk,每個chunk(通常配置為64MB)包含其中一小段的數據。
Chunk1包含x的取值在[minKey, -75)的所有文檔,而Chunk2包含x取值在[-75, 25)之間的所有文檔… 每個chunk的數據都存儲在同一個Shard上,每個Shard可以存儲很多個chunk,chunk存儲在哪個shard的信息會存儲在Config server種,mongos也會根據各個shard上的chunk的數量來自動做負載均衡。
范圍分片能很好的滿足『范圍查詢』的需求,比如想查詢x的值在[-30, 10]之間的所有文檔,這時mongos直接能將請求路由到Chunk2,就能查詢出所有符合條件的文檔。
范圍分片的缺點在于,如果shardkey有明顯遞增(或者遞減)趨勢,則新插入的文檔多會分布到同一個chunk,無法擴展寫的能力,比如使用_id作為shard key,而MongoDB自動生成的id高位是時間戳,是持續遞增的。
### Hash分片
Hash分片是根據用戶的shard key計算hash值(64bit整型),根據hash值按照『范圍分片』的策略將文檔分布到不同的chunk。

Hash分片與范圍分片互補,能將文檔隨機的分散到各個chunk,充分的擴展寫能力,彌補了范圍分片的不足,但不能高效的服務范圍查詢,所有的范圍查詢要分發到后端所有的Shard才能找出滿足條件的文檔。
### 合理的選擇shard key
選擇shard key時,要根據業務的需求及『范圍分片』和『Hash分片』2種方式的優缺點合理選擇,同時還要注意shard key的取值一定要足夠多,否則會出現單個jumbo chunk,即單個chunk非常大并且無法分裂(split);比如某集合存儲用戶的信息,按照age字段分片,而age的取值非常有限,必定會導致單個chunk非常大。
## Mongos
Mongos作為Sharded cluster的訪問入口,所有的請求都由mongos來路由、分發、合并,這些動作對客戶端driver透明,用戶連接mongos就像連接mongod一樣使用。
Mongos會根據請求類型及shard key將請求路由到對應的Shard
### 查詢請求
* 查詢請求不包含shard key,則必須將查詢分發到所有的shard,然后合并查詢結果返回給客戶端
* 查詢請求包含shard key,則直接根據shard key計算出需要查詢的chunk,向對應的shard發送查詢請求
### 寫請求
寫操作必須包含shard key,mongos根據shard key算出文檔應該存儲到哪個chunk,然后將寫請求發送到chunk所在的shard。
### 更新/刪除請求
更新、刪除請求的查詢條件必須包含shard key或者_id,如果是包含shard key,則直接路由到指定的chunk,如果只包含_id,則需將請求發送至所有的shard。
### 其他命令請求
除增刪改查外的其他命令請求處理方式都不盡相同,有各自的處理邏輯,比如listDatabases命令,會向每個Shard及Config Server轉發listDatabases請求,然后將結果進行合并。
## Config Server
### config database
Config server存儲Sharded cluster的所有元數據,所有的元數據都存儲在config數據庫,3.2版本后,Config Server可部署為一個獨立的復制集,極大的方便了Sharded cluster的運維管理。
~~~
mongos> use config
switched to db config
mongos> db.getCollectionNames()
[
"shards",
"actionlog",
"chunks",
"mongos",
"collections",
"lockpings",
"settings",
"version",
"locks",
"databases",
"tags",
"changelog"
]
~~~
### config.shards
config.shards集合存儲各個Shard的信息,可通過addShard、removeShard命令來動態的從Sharded cluster里增加或移除shard。如下所示,cluster目前擁有2個shard,均為復制集。
~~~
mongos> db.addShard("mongo-9003/10.1.72.135:9003,10.1.72.136:9003,10.1.72.137:9003")
mongos> db.addShard("mongo-9003/10.1.72.135:9003,10.1.72.136:9003,10.1.72.137:9003")
mongos> db.shards.find()
{ "_id" : "mongo-9003", "host" : "mongo-9003/10.1.72.135:9003,10.1.72.136:9003,10.1.72.137:9003" }
{ "_id" : "mongo-9004", "host" : "mongo-9004/10.1.72.135:9004,10.1.72.136:9004,10.1.72.137:9004" }
~~~
### config.databases
config.databases集合存儲所有數據庫的信息,包括DB是否開啟分片,[primary shard](https://docs.mongodb.org/manual/core/sharded-cluster-shards/)信息,對于數據庫內沒有開啟分片的集合,所有的數據都會存儲在數據庫的primary shard上。
如下所示,shtest數據庫是開啟分片的(通過[enableSharding命令](https://docs.mongodb.org/manual/reference/method/sh.enableSharding/)),primary shard為mongo-9003; 而test數據庫沒有開啟分片,primary shard為mongo-9003。
~~~
mongos> sh.enableSharding("shtest") { "ok" : 1 }
mongos> db.databases.find()
{ "_id" : "shtest", "primary" : "mongo-9003", "partitioned" : true }
{ "_id" : "test", "primary" : "mongo-9003", "partitioned" : false }
~~~
Sharded cluster在數據庫創建時,為用戶選擇當前存儲數據量最小的shard作為數據庫的primary shard,用戶也可調用[movePrimary命令](https://docs.mongodb.org/manual/reference/command/movePrimary/)來改變primary shard以實現負載均衡,一旦primary shard發生改變,mongos會自動將數據遷移到的新的primary shard上。
### config.colletions
數據分片是針對集合維度的,某個數據庫開啟分片功能后,如果需要讓其中的集合分片存儲,則需調用[shardCollection](https://docs.mongodb.org/manual/reference/command/shardCollection/)命令來針對集合開啟分片。
如下命令,針對shtest數據里的hello集合開啟分片,使用x字段作為shard key來進行范圍分片。
~~~
mongos> sh.shardCollection("shtest.coll", {x: 1})
{ "collectionsharded" : "shtest.coll", "ok" : 1 }
mongos> db.collections.find()
{ "_id" : "shtest.coll", "lastmodEpoch" : ObjectId("57175142c34046c3b556d302"), "lastmod" : ISODate("1970-02-19T17:02:47.296Z"), "dropped" : false, "key" : { "x" : 1 }, "unique" : false }
~~~
### config.chunks
集合分片開啟后,默認會創建一個新的chunk,shard key取值[minKey, maxKey]內的文檔(即所有的文檔)都會存儲到這個chunk。當使用Hash分片策略時,可以預先創建多個chunk,以減少chunk的遷移。
~~~
mongos> db.chunks.find({ns: "shtest.coll"})
{ "_id" : "shtest.coll-x_MinKey", "ns" : "shtest.coll", "min" : { "x" : { "$minKey" : 1 } }, "max" : { "x" : { "$maxKey" : 1 } }, "shard" : "mongo-9003", "lastmod" : Timestamp(1, 0), "lastmodEpoch" : ObjectId("5717530fc34046c3b556d361") }
~~~
當chunk里寫入的數據量增加到一定閾值時,會觸發chunk分裂,將一個chunk的范圍分裂為多個chunk,當各個shard上chunk數量不均衡時,會觸發chunk在shard間的遷移。如下所示,shtest.coll的一個chunk,在寫入數據后分裂成3個chunk。
~~~
mongos> use shtest
mongos> for (var i = 0; i < 10000; i++) { db.coll.insert( {x: i} ); }
mongos> use config
mongos> db.chunks.find({ns: "shtest.coll"})
{ "_id" : "shtest.coll-x_MinKey", "lastmod" : Timestamp(5, 1), "lastmodEpoch" : ObjectId("5703a512a7f97d0799416e2b"), "ns" : "shtest.coll", "min" : { "x" : { "$minKey" : 1 } }, "max" : { "x" : 1 }, "shard" : "mongo-9003" }
{ "_id" : "shtest.coll-x_1.0", "lastmod" : Timestamp(4, 0), "lastmodEpoch" : ObjectId("5703a512a7f97d0799416e2b"), "ns" : "shtest.coll", "min" : { "x" : 1 }, "max" : { "x" : 31 }, "shard" : "mongo-9003" }
{ "_id" : "shtest.coll-x_31.0", "lastmod" : Timestamp(5, 0), "lastmodEpoch" : ObjectId("5703a512a7f97d0799416e2b"), "ns" : "shtest.coll", "min" : { "x" : 31 }, "max" : { "x" : { "$maxKey" : 1 } }, "shard" : "mongo-9004" }
~~~
### config.settings
config.settings集合里主要存儲sharded cluster的配置信息,比如chunk size,是否開啟balancer等
~~~
mongos> db.settings.find()
{ "_id" : "chunksize", "value" : NumberLong(64) }
{ "_id" : "balancer", "stopped" : false }
~~~
### 其他集合
* config.tags主要存儲sharding cluster標簽(tag)相關的你洗,以實現[根據tag來分布chunk的功能](https://docs.mongodb.org/manual/tutorial/administer-shard-tags/);
* config.changelog主要存儲sharding cluster里的所有變更操作,比如balancer遷移chunk的動作就會記錄到changelog里;
* config.mongos存儲當前集群所有mongos的信息;
* config.locks存儲鎖相關的信息,對某個集合進行操作時,比如moveChunk,需要先獲取鎖,避免多個mongos同時遷移同一個集合的chunk。
## 參考資料
* [MongoDB復制集架構原理](https://yq.aliyun.com/articles/64?spm=0.0.0.0.9jrPm8)
* [MongoDB Sharding簡介](https://docs.mongodb.org/manual/core/sharding-introduction/)
* [primary shard](https://docs.mongodb.org/manual/core/sharded-cluster-shards/)
* [enableSharding命令](https://docs.mongodb.org/manual/reference/method/sh.enableSharding/)
* [movePrimary命令](https://docs.mongodb.org/manual/reference/command/movePrimary/)
* [shardCollection](https://docs.mongodb.org/manual/reference/command/shardCollection/)
* [sharding的管理操作](https://docs.mongodb.org/manual/reference/command/nav-sharding/)
* [部署sharded cluster](https://docs.mongodb.org/manual/tutorial/deploy-shard-cluster/)
- 數據庫內核月報目錄
- 數據庫內核月報 - 2016/09
- MySQL · 社區貢獻 · AliSQL那些事兒
- PetaData · 架構體系 · PetaData第二代低成本存儲體系
- MySQL · 社區動態 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 執行計劃緩存設計與實現
- PgSQL · 最佳實踐 · pg_rman源碼淺析與使用
- MySQL · 捉蟲狀態 · bug分析兩例
- PgSQL · 源碼分析 · PG優化器淺析
- MongoDB · 特性分析· Sharding原理與應用
- PgSQL · 源碼分析 · PG中的無鎖算法和原子操作應用一則
- SQLServer · 最佳實踐 · TEMPDB的設計
- 數據庫內核月報 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 邏輯流復制技術的秘密
- MySQL · 特性分析 · MyRocks簡介
- GPDB · 特性分析· Greenplum 備份架構
- SQLServer · 最佳實踐 · RDS for SQLServer 2012權限限制提升與改善
- TokuDB · 引擎特性 · REPLACE 語句優化
- MySQL · 專家投稿 · InnoDB物理行中null值的存儲的推斷與驗證
- PgSQL · 實戰經驗 · 旋轉門壓縮算法在PostgreSQL中的實現
- MySQL · 源碼分析 · Query Cache并發處理
- PgSQL · 源碼分析· pg_dump分析
- 數據庫內核月報 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代價模型淺析
- PgSQL · 實戰經驗 · 分組TOP性能提升44倍
- MySQL · 源碼分析 · 網絡通信模塊淺析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML與JSON應用比較
- MySQL · 最佳實戰 · 審計日志實用案例分析
- MySQL · 性能優化 · 條件下推到物化表
- MySQL · 源碼分析 · Query Cache內部剖析
- MySQL · 捉蟲動態 · 備庫1206錯誤問題說明
- 數據庫內核月報 - 2016/06
- MySQL · 特性分析 · innodb 鎖分裂繼承與遷移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 實戰經驗 · 如何預測Freeze IO風暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函數
- MySQL · TokuDB · checkpoint過程
- MySQL · 特性分析 · 內部臨時表
- MySQL · 最佳實踐 · 空間優化
- SQLServer · 最佳實踐 · 數據庫實現大容量插入的幾種方式
- 數據庫內核月報 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理復制實現
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 邏輯結構和權限體系
- MySQL · 特性分析 · innodb buffer pool相關特性
- PG&GP · 特性分析 · 外部數據導入接口實現分析
- SQLServer · 最佳實踐 · 透明數據加密在SQLServer的應用
- MySQL · TokuDB · 日志子系統和崩潰恢復過程
- MongoDB · 特性分析 · Sharded cluster架構原理
- PostgreSQL · 特性分析 · 統計信息計算方法
- MySQL · 捉蟲動態 · left-join多表導致crash
- 數據庫內核月報 - 2016/04
- MySQL · 參數故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事務一致性與異常處理
- GPDB · 特性分析 · Segment 修復指南
- MySQL · 捉蟲動態 · 并行復制外鍵約束問題二
- PgSQL · 性能優化 · 如何瀟灑的處理每天上百TB的數據增量
- Memcached · 最佳實踐 · 熱點 Key 問題解決方案
- MongoDB · 最佳實踐 · 短連接Auth性能優化
- MySQL · 最佳實踐 · RDS 只讀實例延遲分析
- MySQL · TokuDB · TokuDB索引結構--Fractal Tree
- MySQL · TokuDB · Savepoint漫談
- 數據庫內核月報 - 2016/03
- MySQL · TokuDB · 事務子系統和 MVCC 實現
- MongoDB · 特性分析 · MMAPv1 存儲引擎原理
- PgSQL · 源碼分析 · 優化器邏輯推理
- SQLServer · BUG分析 · Agent 鏈接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死鎖分析
- MySQL · 物理備份 · Percona XtraBackup 備份原理
- GPDB · 特性分析· GreenPlum FTS 機制
- MySQL · 答疑解惑 · 備庫Seconds_Behind_Master計算
- MySQL · 答疑解惑 · MySQL 鎖問題最佳實踐
- 數據庫內核月報 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系統之文件物理結構
- MySQL · 引擎特性 · InnoDB 文件系統之IO系統和內存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 會議見聞 · PgConf.Russia 2016 大會總結
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查詢實現分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能優化 · PostgreSQL TPC-C極限優化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介紹
- MySQL · 特性分析 · 線程池
- MySQL · 答疑解惑 · mysqldump tips 兩則
- 數據庫內核月報 - 2016/01
- MySQL · 引擎特性 · InnoDB 事務鎖系統簡介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步機制
- MySQL · 專家投稿 · MySQL5.7 的 JSON 實現
- MySQL · 特性分析 · 優化器 MRR & BKA
- MySQL · 答疑解惑 · 物理備份死鎖分析
- MySQL · TokuDB · Cachetable 的工作線程和線程池
- MySQL · 特性分析 · drop table的優化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社區動態 · MariaDB on Power8 (下)
- 數據庫內核月報 - 2015/12
- MySQL · 引擎特性 · InnoDB 事務子系統介紹
- PgSQL · 特性介紹 · 全文搜索介紹
- MongoDB · 捉蟲動態 · Kill Hang問題排查記錄
- MySQL · 參數優化 ·RDS MySQL參數調優最佳實踐
- PgSQL · 特性分析 · 備庫激活過程分析
- MySQL · TokuDB · 讓Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨脹
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社區動態 · MariaDB on Power8
- MySQL · 特性分析 · 企業版特性一覽
- 數據庫內核月報 - 2015/11
- MySQL · 社區見聞 · OOW 2015 總結 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用戶組權限管理
- MySQL · 特性分析 · MDL 實現分析
- PgSQL · 特性分析 · full page write 機制
- MySQL · 捉蟲動態 · MySQL 外鍵異常分析
- MySQL · 答疑解惑 · MySQL 優化器 range 的代價計算
- MySQL · 捉蟲動態 · ORDER/GROUP BY 導致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行鎖
- MySQL · 捉蟲動態 · order by limit 造成優化器選擇索引錯誤
- 數據庫內核月報 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引簡介
- MySQL · 特性分析 · 跟蹤Metadata lock
- MySQL · 答疑解惑 · 索引過濾性太差引起CPU飆高分析
- PgSQL · 特性分析 · PG主備流復制機制
- MySQL · 捉蟲動態 · start slave crash 診斷分析
- MySQL · 捉蟲動態 · 刪除索引導致表無法打開
- PgSQL · 特性分析 · PostgreSQL Aurora方案與DEMO
- TokuDB · 捉蟲動態 · CREATE DATABASE 導致crash問題
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL權限存儲與管理
- 數據庫內核月報 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介紹
- PgSQL · 特性分析 · clog異步提交一致性、原子操作與fsync
- MySQL · 捉蟲動態 · BUG 幾例
- PgSQL · 答疑解惑 · 詭異的函數返回值
- MySQL · 捉蟲動態 · 建表過程中crash造成重建表失敗
- PgSQL · 特性分析 · 談談checkpoint的調度
- MySQL · 特性分析 · 5.6 并行復制恢復實現
- MySQL · 備庫優化 · relay fetch 備庫優化
- MySQL · 特性分析 · 5.6并行復制事件分發機制
- MySQL · TokuDB · 文件目錄談
- 數據庫內核月報 - 2015/08
- MySQL · 社區動態 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL備庫延遲原因分析
- MySQL · 社區動態 · MySQL5.6.26 Release Note解讀
- PgSQL · 捉蟲動態 · 執行大SQL語句提示無效的內存申請大小
- MySQL · 社區動態 · MariaDB InnoDB表空間碎片整理
- PgSQL · 答疑解惑 · 歸檔進程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 瘋狂的 filenum++
- MySQL · 功能分析 · 5.6 并行復制實現分析
- MySQL · 功能分析 · MySQL表定義緩存
- 數據庫內核月報 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介紹
- MySQL · TokuDB · TokuDB Checkpoint機制
- PgSQL · 特性分析 · 時間線解析
- PgSQL · 功能分析 · PostGIS 在 O2O應用中的優勢
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社區動態 · MySQL內存分配支持NUMA
- MySQL · 答疑解惑 · 外鍵刪除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介紹 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮點型的顯示問題
- 數據庫內核月報 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩潰恢復過程
- MySQL · 捉蟲動態 · 唯一鍵約束失效
- MySQL · 捉蟲動態 · ALTER IGNORE TABLE導致主備不一致
- MySQL · 答疑解惑 · MySQL Sort 分頁
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉蟲動態 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空間的意外增長
- MySQL · 社區動態 · MariaDB Role 體系
- MySQL · TokuDB · TokuDB數據文件大小計算
- 數據庫內核月報 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 專家投稿 · MySQL數據庫SYS CPU高的可能性分析
- MySQL · 捉蟲動態 · 5.6 與 5.5 InnoDB 不兼容導致 crash
- MySQL · 答疑解惑 · InnoDB 預讀 VS Oracle 多塊讀
- PgSQL · 社區動態 · 9.5 新功能BRIN索引
- MySQL · 捉蟲動態 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉蟲動態 · 臨時表操作導致主備不一致
- TokuDB · 引擎特性 · zstd壓縮算法
- MySQL · 答疑解惑 · binlog 位點刷新策略
- 數據庫內核月報 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 產品新聞 · RDS TokuDB小手冊
- PgSQL · 社區動態 · 說一說PgSQL 9.4.1中的那些安全補丁
- MySQL · 捉蟲動態 · 連接斷開導致XA事務丟失
- MySQL · 捉蟲動態 · GTID下slave_net_timeout值太小問題
- MySQL · 捉蟲動態 · Relay log 中 GTID group 完整性檢測
- MySQL · 答疑釋惑 · UPDATE交換列單表和多表的區別
- MySQL · 捉蟲動態 · 刪被引用索引導致crash
- MySQL · 答疑釋惑 · GTID下auto_position=0時數據不一致
- 數據庫內核月報 - 2015/03
- MySQL · 答疑釋惑· 并發Replace into導致的死鎖分析
- MySQL · 性能優化· 5.7.6 InnoDB page flush 優化
- MySQL · 捉蟲動態· pid file丟失問題分析
- MySQL · 答疑釋惑· using filesort VS using temporary
- MySQL · 優化限制· MySQL index_condition_pushdown
- MySQL · 捉蟲動態·DROP DATABASE外鍵約束的GTID BUG
- MySQL · 答疑釋惑· lower_case_table_names 使用問題
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb類型解析
- TokuDB ·引擎機制· TokuDB線程池
- 數據庫內核月報 - 2015/02
- MySQL · 性能優化· InnoDB buffer pool flush策略漫談
- MySQL · 社區動態· 5.6.23 InnoDB相關Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑釋惑· InnoDB丟失自增值
- MySQL · 答疑釋惑· 5.5 和 5.6 時間類型兼容問題
- MySQL · 捉蟲動態· 變量修改導致binlog錯誤
- MariaDB · 特性分析· 表/表空間加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志詳解
- 數據庫內核月報 - 2015/01
- MySQL · 性能優化· Group Commit優化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能優化· 啟用GTID場景的性能問題及優化
- MySQL · 捉蟲動態· InnoDB自增列重復值問題
- MySQL · 優化改進· 復制性能改進過程
- MySQL · 談古論今· key分區算法演變分析
- MySQL · 捉蟲動態· mysql client crash一例
- MySQL · 捉蟲動態· 設置 gtid_purged 破壞AUTO_POSITION復制協議
- MySQL · 捉蟲動態· replicate filter 和 GTID 一起使用的問題
- TokuDB·特性分析· Optimize Table
- 數據庫內核月報 - 2014/12
- MySQL· 性能優化·5.7 Innodb事務系統
- MySQL· 踩過的坑·5.6 GTID 和存儲引擎那會事
- MySQL· 性能優化·thread pool 原理分析
- MySQL· 性能優化·并行復制外建約束問題
- MySQL· 答疑釋惑·binlog event有序性
- MySQL· 答疑釋惑·server_id為0的Rotate
- MySQL· 性能優化·Bulk Load for CREATE INDEX
- MySQL· 捉蟲動態·Opened tables block read only
- MySQL· 優化改進· GTID啟動優化
- TokuDB· Binary Log Group Commit with TokuDB
- 數據庫內核月報 - 2014/11
- MySQL· 捉蟲動態·OPTIMIZE 不存在的表
- MySQL· 捉蟲動態·SIGHUP 導致 binlog 寫錯
- MySQL· 5.7改進·Recovery改進
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7優化·Metadata Lock子系統的優化
- MySQL· 5.7特性·在線Truncate undo log 表空間
- MySQL· 性能優化·hash_scan 算法的實現解析
- TokuDB· 版本優化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能優化·filesort with small LIMIT optimization
- 數據庫內核月報 - 2014/10
- MySQL· 5.7重構·Optimizer Cost Model
- MySQL· 系統限制·text字段數
- MySQL· 捉蟲動態·binlog重放失敗
- MySQL· 捉蟲動態·從庫OOM
- MySQL· 捉蟲動態·崩潰恢復失敗
- MySQL· 功能改進·InnoDB Warmup特性
- MySQL· 文件結構·告別frm文件
- MariaDB· 新鮮特性·ANALYZE statement 語法
- TokuDB· 主備復制·Read Free Replication
- TokuDB· 引擎特性·壓縮
- 數據庫內核月報 - 2014/09
- MySQL· 捉蟲動態·GTID 和 DELAYED
- MySQL· 限制改進·GTID和升級
- MySQL· 捉蟲動態·GTID 和 binlog_checksum
- MySQL· 引擎差異·create_time in status
- MySQL· 參數故事·thread_concurrency
- MySQL· 捉蟲動態·auto_increment
- MariaDB· 性能優化·Extended Keys
- MariaDB·主備復制·CREATE OR REPLACE
- TokuDB· 參數故事·數據安全和性能
- TokuDB· HA方案·TokuDB熱備
- 數據庫內核月報 - 2014/08
- MySQL· 參數故事·timed_mutexes
- MySQL· 參數故事·innodb_flush_log_at_trx_commit
- MySQL· 捉蟲動態·Count(Distinct) ERROR
- MySQL· 捉蟲動態·mysqldump BUFFER OVERFLOW
- MySQL· 捉蟲動態·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能優化·Bulk Fetch
- TokuDB· 數據結構·Fractal-Trees與LSM-Trees對比
- TokuDB·社區八卦·TokuDB團隊