## 為什么需要索引?
當你抱怨MongoDB集合查詢效率低的時候,可能你就需要考慮使用索引了,為了方便后續介紹,先科普下MongoDB里的索引機制(同樣適用于其他的數據庫比如mysql)。
~~~
mongo-9552:PRIMARY> db.person.find()
{ "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name" : "jack", "age" : 19 }
{ "_id" : ObjectId("571b5dae1b0d530a03b3ce83"), "name" : "rose", "age" : 20 }
{ "_id" : ObjectId("571b5db81b0d530a03b3ce84"), "name" : "jack", "age" : 18 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce85"), "name" : "tony", "age" : 21 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce86"), "name" : "adam", "age" : 18 }
~~~
當你往某各個集合插入多個文檔后,每個文檔在經過底層的存儲引擎持久化后,會有一個位置信息,通過這個位置信息,就能從存儲引擎里讀出該文檔。比如[mmapv1引擎](https://docs.mongodb.org/manual/core/mmapv1/)里,位置信息是`『文件id + 文件內offset 』`, 在[wiredtiger存儲引擎](https://docs.mongodb.org/manual/core/wiredtiger/)(一個KV存儲引擎)里,位置信息是wiredtiger在存儲文檔時生成的一個key,通過這個key能訪問到對應的文檔;為方便介紹,統一用`pos(position的縮寫)`來代表位置信息。
比如上面的例子里,`person`集合里包含插入了4個文檔,假設其存儲后位置信息如下(為方便描述,文檔省去_id字段)
| 位置信息 | 文檔 |
| --- | --- |
| pos1 | {“name” : “jack”, “age” : 19 } |
| pos2 | {“name” : “rose”, “age” : 20 } |
| pos3 | {“name” : “jack”, “age” : 18 } |
| pos4 | {“name” : “tony”, “age” : 21} |
| pos5 | {“name” : “adam”, “age” : 18} |
假設現在有個查詢?`db.person.find( {age: 18} )`, 查詢所有年齡為18歲的人,這時需要遍歷所有的文檔(『全表掃描』),根據位置信息讀出文檔,對比age字段是否為18。當然如果只有4個文檔,全表掃描的開銷并不大,但如果集合文檔數量到百萬、甚至千萬上億的時候,對集合進行全表掃描開銷是非常大的,一個查詢耗費數十秒甚至幾分鐘都有可能。
如果想加速?`db.person.find( {age: 18} )`,就可以考慮對person表的age字段[建立索引](https://docs.mongodb.org/manual/reference/method/db.collection.createIndex/)。
~~~
db.person.createIndex( {age: 1} ) // 按age字段創建升序索引
~~~
建立索引后,MongoDB會額外存儲一份按age字段升序排序的索引數據,索引結構類似如下,索引通常采用類似btree的結構持久化存儲,以保證從索引里快速(`O(logN)的時間復雜度`)找出某個age值對應的位置信息,然后根據位置信息就能讀取出對應的文檔。
| age | 位置信息 |
| --- | --- |
| 18 | pos3 |
| 18 | pos5 |
| 19 | pos1 |
| 20 | pos2 |
| 21 | pos4 |
簡單的說,索引就是將`文檔`按照某個(或某些)字段順序組織起來,以便能根據該字段高效的查詢。有了索引,至少能優化如下場景的效率:
* 查詢,比如查詢年齡為18的所有人
* 更新/刪除,將年齡為18的所有人的信息更新或刪除,因為更新或刪除時,需要根據條件先查詢出所有符合條件的文檔,所以本質上還是在優化查詢
* 排序,將所有人的信息按年齡排序,如果沒有索引,需要全表掃描文檔,然后再對掃描的結果進行排序
眾所周知,MongoDB默認會為插入的文檔生成_id字段(如果應用本身沒有指定該字段),_id是文檔唯一的標識,為了保證能根據文檔id快遞查詢文檔,MongoDB默認會為集合創建_id字段的索引。
~~~
mongo-9552:PRIMARY> db.person.getIndexes() // 查詢集合的索引信息
[
{
"ns" : "test.person", // 集合名
"v" : 1, // 索引版本
"key" : { // 索引的字段及排序方向
"_id" : 1 // 根據_id字段升序索引
},
"name" : "_id_" // 索引的名稱
}
]
~~~
## MongoDB索引類型
MongoDB支持多種類型的索引,包括單字段索引、復合索引、多key索引、文本索引等,每種類型的索引有不同的使用場合。
### 單字段索引 (Single Field Index)
~~~
db.person.createIndex( {age: 1} )
~~~
上述語句針對age創建了單字段索引,其能加速對age字段的各種查詢請求,是最常見的索引形式,MongoDB默認創建的id索引也是這種類型。
{age: 1} 代表升序索引,也可以通過{age: -1}來指定降序索引,對于單字段索引,升序/降序效果是一樣的。
### 復合索引 (Compound Index)
復合索引是Single Field Index的升級版本,它針對多個字段聯合創建索引,先按第一個字段排序,第一個字段相同的文檔按第二個字段排序,依次類推,如下針對age, name這2個字段創建一個復合索引。
~~~
db.person.createIndex( {age: 1, name: 1} )
~~~
上述索引對應的數據組織類似下表,與{age: 1}索引不同的時,當age字段相同時,在根據name字段進行排序,所以pos5對應的文檔排在pos3之前。
| age | 位置信息 |
| --- | --- |
| 18 | pos5 |
| 18 | pos3 |
| 19 | pos1 |
| 20 | pos2 |
| 21 | pos4 |
復合索引能滿足的查詢場景比單字段索引更豐富,不光能滿足多個字段組合起來的查詢,比如`db.person.find( {age: 18, name: "jack"} )`,也能滿足所以能匹配符合索引前綴的查詢,這里{age: 1}即為{age: 1, name: 1}的前綴,所以類似`db.person.find( {age: 18} )`的查詢也能通過該索引來加速;但`db.person.find( {name: "jack"} )`則無法使用該復合索引。如果經常需要根據『name字段』以及『name和age字段組合』來查詢,則應該創建如下的復合索引
~~~
db.person.createIndex( {name: 1, age: 1} )
~~~
除了查詢的需求能夠影響索引的順序,字段的值分布也是一個重要的考量因素,即使person集合所有的查詢都是『name和age字段組合』(指定特定的name和age),字段的順序也是有影響的。
age字段的取值很有限,即擁有相同age字段的文檔會有很多;而name字段的取值則豐富很多,擁有相同name字段的文檔很少;顯然先按name字段查找,再在相同name的文檔里查找age字段更為高效。
### 多key索引 (Multikey Index)
當索引的字段為數組時,創建出的索引稱為多key索引,多key索引會為數組的每個元素建立一條索引,比如person表加入一個habbit字段(數組)用于描述興趣愛好,需要查詢有相同興趣愛好的人就可以利用habbit字段的多key索引。
~~~
{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} ) // 自動創建多key索引
db.person.find( {habbit: "football"} )
~~~
### 其他類型索引
[哈希索引(Hashed Index)](https://docs.mongodb.org/manual/core/index-hashed/)是指按照某個字段的hash值來建立索引,目前主要用于[MongoDB Sharded Cluster](https://yq.aliyun.com/articles/32434?spm=5176.100238.yqhn2.22.0cUwgh)的Hash分片,hash索引只能滿足字段完全匹配的查詢,不能滿足范圍查詢等。
[地理位置索引(Geospatial Index)](https://docs.mongodb.org/manual/core/2d/)能很好的解決O2O的應用場景,比如『查找附近的美食』、『查找某個區域內的車站』等。
[文本索引(Text Index)](https://docs.mongodb.org/manual/core/index-text/)能解決快速文本查找的需求,比如有一個博客文章集合,需要根據博客的內容來快速查找,則可以針對博客內容建立文本索引。
### 索引額外屬性
MongoDB除了支持多種不同類型的索引,還能對索引定制一些特殊的屬性。
* [唯一索引 (unique index)](https://docs.mongodb.org/v3.0/tutorial/create-a-unique-index/):保證索引對應的字段不會出現相同的值,比如_id索引就是唯一索引
* [TTL索引](https://docs.mongodb.org/manual/core/index-ttl/):可以針對某個時間字段,指定文檔的過期時間(經過指定時間后過期 或 在某個時間點過期)
* [部分索引 (partial index)](https://docs.mongodb.org/manual/core/index-partial/): 只針對符合某個特定條件的文檔建立索引,3.2版本才支持該特性
* [稀疏索引(sparse index)](https://docs.mongodb.org/manual/core/index-sparse/): 只針對存在索引字段的文檔建立索引,可看做是部分索引的一種特殊情況
## 索引優化
### db profiling
MongoDB支持對DB的請求進行[profiling](https://docs.mongodb.org/manual/tutorial/manage-the-database-profiler/),目前支持3種級別的profiling。
* 0: 不開啟profiling
* 1: 將處理時間超過某個閾值(默認100ms)的請求都記錄到DB下的system.profile集合 (類似于mysql、redis的slowlog)
* 2: 將所有的請求都記錄到DB下的system.profile集合(生產環境慎用)
通常,生產環境建議使用1級別的profiling,并根據自身需求配置合理的閾值,用于監測慢請求的情況,并及時的做索引優化。
如果能在集合創建的時候就能『根據業務查詢需求決定應該創建哪些索引』,當然是最佳的選擇;但由于業務需求多變,要根據實際情況不斷的進行優化。索引并不是越多越好,集合的索引太多,會影響寫入、更新的性能,每次寫入都需要更新所有索引的數據;所以你system.profile里的慢請求可能是索引建立的不夠導致,也可能是索引過多導致。
### 查詢計劃
索引已經建立了,但查詢還是很慢怎么破?這時就得深入的分析下索引的使用情況了,可通過查看下詳細的[查詢計劃](https://docs.mongodb.org/manual/core/query-plans/)來決定如何優化。通過執行計劃可以看出如下問題
1. 根據某個/些字段查詢,但沒有建立索引
2. 根據某個/些字段查詢,但建立了多個索引,執行查詢時沒有使用預期的索引。
建立索引前,`db.person.find( {age: 18} )`必須執行[COLLSCAN](https://docs.mongodb.org/manual/reference/explain-results/#queryplanner),即全表掃描。
~~~
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"age" : {
"$eq" : 18
}
},
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
~~~
建立索引后,通過查詢計劃可以看出,先進行[IXSCAN](https://docs.mongodb.org/manual/reference/explain-results/#queryplanner)(從索引中查找),然后[FETCH](https://docs.mongodb.org/manual/reference/explain-results/#queryplanner),讀取出滿足條件的文檔。
~~~
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"age" : 1
},
"indexName" : "age_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[18.0, 18.0]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
~~~
## 參考資料
* [MongoDB索引介紹](https://docs.mongodb.org/manual/core/indexes)
* [createIndex命令](https://docs.mongodb.org/manual/reference/method/db.collection.createIndex/)
* [MongoDB Sharded Cluster](https://yq.aliyun.com/articles/32434?spm=5176.100238.yqhn2.22.0cUwgh)
* [唯一索引 (unique index)](https://docs.mongodb.org/v3.0/tutorial/create-a-unique-index/)
* [TTL索引](https://docs.mongodb.org/manual/core/index-ttl/)
* [部分索引 (partial index)](https://docs.mongodb.org/manual/core/index-partial/)
* [稀疏索引(sparse index)](https://docs.mongodb.org/manual/core/index-sparse/)
* [database profiling](https://docs.mongodb.org/manual/tutorial/manage-the-database-profiler/)
- 數據庫內核月報目錄
- 數據庫內核月報 - 2016/09
- MySQL · 社區貢獻 · AliSQL那些事兒
- PetaData · 架構體系 · PetaData第二代低成本存儲體系
- MySQL · 社區動態 · MariaDB 10.2 前瞻
- MySQL · 特性分析 · 執行計劃緩存設計與實現
- PgSQL · 最佳實踐 · pg_rman源碼淺析與使用
- MySQL · 捉蟲狀態 · bug分析兩例
- PgSQL · 源碼分析 · PG優化器淺析
- MongoDB · 特性分析· Sharding原理與應用
- PgSQL · 源碼分析 · PG中的無鎖算法和原子操作應用一則
- SQLServer · 最佳實踐 · TEMPDB的設計
- 數據庫內核月報 - 2016/08
- MySQL · 特性分析 ·MySQL 5.7新特性系列四
- PgSQL · PostgreSQL 邏輯流復制技術的秘密
- MySQL · 特性分析 · MyRocks簡介
- GPDB · 特性分析· Greenplum 備份架構
- SQLServer · 最佳實踐 · RDS for SQLServer 2012權限限制提升與改善
- TokuDB · 引擎特性 · REPLACE 語句優化
- MySQL · 專家投稿 · InnoDB物理行中null值的存儲的推斷與驗證
- PgSQL · 實戰經驗 · 旋轉門壓縮算法在PostgreSQL中的實現
- MySQL · 源碼分析 · Query Cache并發處理
- PgSQL · 源碼分析· pg_dump分析
- 數據庫內核月報 - 2016/07
- MySQL · 特性分析 ·MySQL 5.7新特性系列三
- MySQL · 特性分析 · 5.7 代價模型淺析
- PgSQL · 實戰經驗 · 分組TOP性能提升44倍
- MySQL · 源碼分析 · 網絡通信模塊淺析
- MongoDB · 特性分析 · 索引原理
- SQLServer · 特性分析 · XML與JSON應用比較
- MySQL · 最佳實戰 · 審計日志實用案例分析
- MySQL · 性能優化 · 條件下推到物化表
- MySQL · 源碼分析 · Query Cache內部剖析
- MySQL · 捉蟲動態 · 備庫1206錯誤問題說明
- 數據庫內核月報 - 2016/06
- MySQL · 特性分析 · innodb 鎖分裂繼承與遷移
- MySQL · 特性分析 ·MySQL 5.7新特性系列二
- PgSQL · 實戰經驗 · 如何預測Freeze IO風暴
- GPDB · 特性分析· Filespace和Tablespace
- MariaDB · 新特性 · 窗口函數
- MySQL · TokuDB · checkpoint過程
- MySQL · 特性分析 · 內部臨時表
- MySQL · 最佳實踐 · 空間優化
- SQLServer · 最佳實踐 · 數據庫實現大容量插入的幾種方式
- 數據庫內核月報 - 2016/05
- MySQL · 引擎特性 · 基于InnoDB的物理復制實現
- MySQL · 特性分析 · MySQL 5.7新特性系列一
- PostgreSQL · 特性分析 · 邏輯結構和權限體系
- MySQL · 特性分析 · innodb buffer pool相關特性
- PG&GP · 特性分析 · 外部數據導入接口實現分析
- SQLServer · 最佳實踐 · 透明數據加密在SQLServer的應用
- MySQL · TokuDB · 日志子系統和崩潰恢復過程
- MongoDB · 特性分析 · Sharded cluster架構原理
- PostgreSQL · 特性分析 · 統計信息計算方法
- MySQL · 捉蟲動態 · left-join多表導致crash
- 數據庫內核月報 - 2016/04
- MySQL · 參數故事 · innodb_additional_mem_pool_size
- GPDB · 特性分析 · Segment事務一致性與異常處理
- GPDB · 特性分析 · Segment 修復指南
- MySQL · 捉蟲動態 · 并行復制外鍵約束問題二
- PgSQL · 性能優化 · 如何瀟灑的處理每天上百TB的數據增量
- Memcached · 最佳實踐 · 熱點 Key 問題解決方案
- MongoDB · 最佳實踐 · 短連接Auth性能優化
- MySQL · 最佳實踐 · RDS 只讀實例延遲分析
- MySQL · TokuDB · TokuDB索引結構--Fractal Tree
- MySQL · TokuDB · Savepoint漫談
- 數據庫內核月報 - 2016/03
- MySQL · TokuDB · 事務子系統和 MVCC 實現
- MongoDB · 特性分析 · MMAPv1 存儲引擎原理
- PgSQL · 源碼分析 · 優化器邏輯推理
- SQLServer · BUG分析 · Agent 鏈接泄露分析
- Redis · 特性分析 · AOF Rewrite 分析
- MySQL · BUG分析 · Rename table 死鎖分析
- MySQL · 物理備份 · Percona XtraBackup 備份原理
- GPDB · 特性分析· GreenPlum FTS 機制
- MySQL · 答疑解惑 · 備庫Seconds_Behind_Master計算
- MySQL · 答疑解惑 · MySQL 鎖問題最佳實踐
- 數據庫內核月報 - 2016/02
- MySQL · 引擎特性 · InnoDB 文件系統之文件物理結構
- MySQL · 引擎特性 · InnoDB 文件系統之IO系統和內存管理
- MySQL · 特性分析 · InnoDB transaction history
- PgSQL · 會議見聞 · PgConf.Russia 2016 大會總結
- PgSQL · 答疑解惑 · PostgreSQL 9.6 并行查詢實現分析
- MySQL · TokuDB · TokuDB之黑科技工具
- PgSQL · 性能優化 · PostgreSQL TPC-C極限優化玩法
- MariaDB · 版本特性 · MariaDB 的 GTID 介紹
- MySQL · 特性分析 · 線程池
- MySQL · 答疑解惑 · mysqldump tips 兩則
- 數據庫內核月報 - 2016/01
- MySQL · 引擎特性 · InnoDB 事務鎖系統簡介
- GPDB · 特性分析· GreenPlum Primary/Mirror 同步機制
- MySQL · 專家投稿 · MySQL5.7 的 JSON 實現
- MySQL · 特性分析 · 優化器 MRR & BKA
- MySQL · 答疑解惑 · 物理備份死鎖分析
- MySQL · TokuDB · Cachetable 的工作線程和線程池
- MySQL · 特性分析 · drop table的優化
- MySQL · 答疑解惑 · GTID不一致分析
- PgSQL · 特性分析 · Plan Hint
- MariaDB · 社區動態 · MariaDB on Power8 (下)
- 數據庫內核月報 - 2015/12
- MySQL · 引擎特性 · InnoDB 事務子系統介紹
- PgSQL · 特性介紹 · 全文搜索介紹
- MongoDB · 捉蟲動態 · Kill Hang問題排查記錄
- MySQL · 參數優化 ·RDS MySQL參數調優最佳實踐
- PgSQL · 特性分析 · 備庫激活過程分析
- MySQL · TokuDB · 讓Hot Backup更完美
- PgSQL · 答疑解惑 · 表膨脹
- MySQL · 特性分析 · Index Condition Pushdown (ICP)
- MariaDB · 社區動態 · MariaDB on Power8
- MySQL · 特性分析 · 企業版特性一覽
- 數據庫內核月報 - 2015/11
- MySQL · 社區見聞 · OOW 2015 總結 MySQL 篇
- MySQL · 特性分析 · Statement Digest
- PgSQL · 答疑解惑 · PostgreSQL 用戶組權限管理
- MySQL · 特性分析 · MDL 實現分析
- PgSQL · 特性分析 · full page write 機制
- MySQL · 捉蟲動態 · MySQL 外鍵異常分析
- MySQL · 答疑解惑 · MySQL 優化器 range 的代價計算
- MySQL · 捉蟲動態 · ORDER/GROUP BY 導致 mysqld crash
- MySQL · TokuDB · TokuDB 中的行鎖
- MySQL · 捉蟲動態 · order by limit 造成優化器選擇索引錯誤
- 數據庫內核月報 - 2015/10
- MySQL · 引擎特性 · InnoDB 全文索引簡介
- MySQL · 特性分析 · 跟蹤Metadata lock
- MySQL · 答疑解惑 · 索引過濾性太差引起CPU飆高分析
- PgSQL · 特性分析 · PG主備流復制機制
- MySQL · 捉蟲動態 · start slave crash 診斷分析
- MySQL · 捉蟲動態 · 刪除索引導致表無法打開
- PgSQL · 特性分析 · PostgreSQL Aurora方案與DEMO
- TokuDB · 捉蟲動態 · CREATE DATABASE 導致crash問題
- PgSQL · 特性分析 · pg_receivexlog工具解析
- MySQL · 特性分析 · MySQL權限存儲與管理
- 數據庫內核月報 - 2015/09
- MySQL · 引擎特性 · InnoDB Adaptive hash index介紹
- PgSQL · 特性分析 · clog異步提交一致性、原子操作與fsync
- MySQL · 捉蟲動態 · BUG 幾例
- PgSQL · 答疑解惑 · 詭異的函數返回值
- MySQL · 捉蟲動態 · 建表過程中crash造成重建表失敗
- PgSQL · 特性分析 · 談談checkpoint的調度
- MySQL · 特性分析 · 5.6 并行復制恢復實現
- MySQL · 備庫優化 · relay fetch 備庫優化
- MySQL · 特性分析 · 5.6并行復制事件分發機制
- MySQL · TokuDB · 文件目錄談
- 數據庫內核月報 - 2015/08
- MySQL · 社區動態 · InnoDB Page Compression
- PgSQL · 答疑解惑 · RDS中的PostgreSQL備庫延遲原因分析
- MySQL · 社區動態 · MySQL5.6.26 Release Note解讀
- PgSQL · 捉蟲動態 · 執行大SQL語句提示無效的內存申請大小
- MySQL · 社區動態 · MariaDB InnoDB表空間碎片整理
- PgSQL · 答疑解惑 · 歸檔進程cp命令的core文件追查
- MySQL · 答疑解惑 · open file limits
- MySQL · TokuDB · 瘋狂的 filenum++
- MySQL · 功能分析 · 5.6 并行復制實現分析
- MySQL · 功能分析 · MySQL表定義緩存
- 數據庫內核月報 - 2015/07
- MySQL · 引擎特性 · Innodb change buffer介紹
- MySQL · TokuDB · TokuDB Checkpoint機制
- PgSQL · 特性分析 · 時間線解析
- PgSQL · 功能分析 · PostGIS 在 O2O應用中的優勢
- MySQL · 引擎特性 · InnoDB index lock前世今生
- MySQL · 社區動態 · MySQL內存分配支持NUMA
- MySQL · 答疑解惑 · 外鍵刪除bug分析
- MySQL · 引擎特性 · MySQL logical read-ahead
- MySQL · 功能介紹 · binlog拉取速度的控制
- MySQL · 答疑解惑 · 浮點型的顯示問題
- 數據庫內核月報 - 2015/06
- MySQL · 引擎特性 · InnoDB 崩潰恢復過程
- MySQL · 捉蟲動態 · 唯一鍵約束失效
- MySQL · 捉蟲動態 · ALTER IGNORE TABLE導致主備不一致
- MySQL · 答疑解惑 · MySQL Sort 分頁
- MySQL · 答疑解惑 · binlog event 中的 error code
- PgSQL · 功能分析 · Listen/Notify 功能
- MySQL · 捉蟲動態 · 任性的 normal shutdown
- PgSQL · 追根究底 · WAL日志空間的意外增長
- MySQL · 社區動態 · MariaDB Role 體系
- MySQL · TokuDB · TokuDB數據文件大小計算
- 數據庫內核月報 - 2015/05
- MySQL · 引擎特性 · InnoDB redo log漫游
- MySQL · 專家投稿 · MySQL數據庫SYS CPU高的可能性分析
- MySQL · 捉蟲動態 · 5.6 與 5.5 InnoDB 不兼容導致 crash
- MySQL · 答疑解惑 · InnoDB 預讀 VS Oracle 多塊讀
- PgSQL · 社區動態 · 9.5 新功能BRIN索引
- MySQL · 捉蟲動態 · MySQL DDL BUG
- MySQL · 答疑解惑 · set names 都做了什么
- MySQL · 捉蟲動態 · 臨時表操作導致主備不一致
- TokuDB · 引擎特性 · zstd壓縮算法
- MySQL · 答疑解惑 · binlog 位點刷新策略
- 數據庫內核月報 - 2015/04
- MySQL · 引擎特性 · InnoDB undo log 漫游
- TokuDB · 產品新聞 · RDS TokuDB小手冊
- PgSQL · 社區動態 · 說一說PgSQL 9.4.1中的那些安全補丁
- MySQL · 捉蟲動態 · 連接斷開導致XA事務丟失
- MySQL · 捉蟲動態 · GTID下slave_net_timeout值太小問題
- MySQL · 捉蟲動態 · Relay log 中 GTID group 完整性檢測
- MySQL · 答疑釋惑 · UPDATE交換列單表和多表的區別
- MySQL · 捉蟲動態 · 刪被引用索引導致crash
- MySQL · 答疑釋惑 · GTID下auto_position=0時數據不一致
- 數據庫內核月報 - 2015/03
- MySQL · 答疑釋惑· 并發Replace into導致的死鎖分析
- MySQL · 性能優化· 5.7.6 InnoDB page flush 優化
- MySQL · 捉蟲動態· pid file丟失問題分析
- MySQL · 答疑釋惑· using filesort VS using temporary
- MySQL · 優化限制· MySQL index_condition_pushdown
- MySQL · 捉蟲動態·DROP DATABASE外鍵約束的GTID BUG
- MySQL · 答疑釋惑· lower_case_table_names 使用問題
- PgSQL · 特性分析· Logical Decoding探索
- PgSQL · 特性分析· jsonb類型解析
- TokuDB ·引擎機制· TokuDB線程池
- 數據庫內核月報 - 2015/02
- MySQL · 性能優化· InnoDB buffer pool flush策略漫談
- MySQL · 社區動態· 5.6.23 InnoDB相關Bugfix
- PgSQL · 特性分析· Replication Slot
- PgSQL · 特性分析· pg_prewarm
- MySQL · 答疑釋惑· InnoDB丟失自增值
- MySQL · 答疑釋惑· 5.5 和 5.6 時間類型兼容問題
- MySQL · 捉蟲動態· 變量修改導致binlog錯誤
- MariaDB · 特性分析· 表/表空間加密
- MariaDB · 特性分析· Per-query variables
- TokuDB · 特性分析· 日志詳解
- 數據庫內核月報 - 2015/01
- MySQL · 性能優化· Group Commit優化
- MySQL · 新增特性· DDL fast fail
- MySQL · 性能優化· 啟用GTID場景的性能問題及優化
- MySQL · 捉蟲動態· InnoDB自增列重復值問題
- MySQL · 優化改進· 復制性能改進過程
- MySQL · 談古論今· key分區算法演變分析
- MySQL · 捉蟲動態· mysql client crash一例
- MySQL · 捉蟲動態· 設置 gtid_purged 破壞AUTO_POSITION復制協議
- MySQL · 捉蟲動態· replicate filter 和 GTID 一起使用的問題
- TokuDB·特性分析· Optimize Table
- 數據庫內核月報 - 2014/12
- MySQL· 性能優化·5.7 Innodb事務系統
- MySQL· 踩過的坑·5.6 GTID 和存儲引擎那會事
- MySQL· 性能優化·thread pool 原理分析
- MySQL· 性能優化·并行復制外建約束問題
- MySQL· 答疑釋惑·binlog event有序性
- MySQL· 答疑釋惑·server_id為0的Rotate
- MySQL· 性能優化·Bulk Load for CREATE INDEX
- MySQL· 捉蟲動態·Opened tables block read only
- MySQL· 優化改進· GTID啟動優化
- TokuDB· Binary Log Group Commit with TokuDB
- 數據庫內核月報 - 2014/11
- MySQL· 捉蟲動態·OPTIMIZE 不存在的表
- MySQL· 捉蟲動態·SIGHUP 導致 binlog 寫錯
- MySQL· 5.7改進·Recovery改進
- MySQL· 5.7特性·高可用支持
- MySQL· 5.7優化·Metadata Lock子系統的優化
- MySQL· 5.7特性·在線Truncate undo log 表空間
- MySQL· 性能優化·hash_scan 算法的實現解析
- TokuDB· 版本優化· 7.5.0
- TokuDB· 引擎特性· FAST UPDATES
- MariaDB· 性能優化·filesort with small LIMIT optimization
- 數據庫內核月報 - 2014/10
- MySQL· 5.7重構·Optimizer Cost Model
- MySQL· 系統限制·text字段數
- MySQL· 捉蟲動態·binlog重放失敗
- MySQL· 捉蟲動態·從庫OOM
- MySQL· 捉蟲動態·崩潰恢復失敗
- MySQL· 功能改進·InnoDB Warmup特性
- MySQL· 文件結構·告別frm文件
- MariaDB· 新鮮特性·ANALYZE statement 語法
- TokuDB· 主備復制·Read Free Replication
- TokuDB· 引擎特性·壓縮
- 數據庫內核月報 - 2014/09
- MySQL· 捉蟲動態·GTID 和 DELAYED
- MySQL· 限制改進·GTID和升級
- MySQL· 捉蟲動態·GTID 和 binlog_checksum
- MySQL· 引擎差異·create_time in status
- MySQL· 參數故事·thread_concurrency
- MySQL· 捉蟲動態·auto_increment
- MariaDB· 性能優化·Extended Keys
- MariaDB·主備復制·CREATE OR REPLACE
- TokuDB· 參數故事·數據安全和性能
- TokuDB· HA方案·TokuDB熱備
- 數據庫內核月報 - 2014/08
- MySQL· 參數故事·timed_mutexes
- MySQL· 參數故事·innodb_flush_log_at_trx_commit
- MySQL· 捉蟲動態·Count(Distinct) ERROR
- MySQL· 捉蟲動態·mysqldump BUFFER OVERFLOW
- MySQL· 捉蟲動態·long semaphore waits
- MariaDB·分支特性·支持大于16K的InnoDB Page Size
- MariaDB·分支特性·FusionIO特性支持
- TokuDB· 性能優化·Bulk Fetch
- TokuDB· 數據結構·Fractal-Trees與LSM-Trees對比
- TokuDB·社區八卦·TokuDB團隊