<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## 數列概要<!-- {docsify-ignore} --> 數列是高中階段學生普遍掌握比較薄弱的章節,體現在其一對特殊數列的基本性質理解掌握不足,其二對數列的特殊性理解掌握不足;由于數列是特殊的函數,故數列類的題目更多的考查從函數的角度理解題目,以及數列從函數角度出發的應用。 ### 低階知識 * <a href=" http://www.cnblogs.com/wanghai0666/p/6268370.html " target="_blank" >理解教材意圖輕松積累數列 </a> * <a href=" https://www.cnblogs.com/wanghai0666/p/10193879.html " target="_blank" >等差數列的概念和性質</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10212401.html " target="_blank" >等比數列的概念和性質</a> * [等比數列的判定和證明](https://www.cnblogs.com/wanghai0666/p/17924132.html) * <a href="https://www.cnblogs.com/wanghai0666/p/10604115.html " target="_blank">累乘法</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10604109.html " target="_blank">累加法</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/9524701.html " target="_blank" >裂項相消法</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/5867164.html " target="_blank" >放縮法</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10550707.html " target="_blank">數列中的常見錯誤</a> * <a href="https://www.cnblogs.com/wanghai0666/p/12352964.html" target="_blank">倒序相加求和法</a> * <a href="https://www.cnblogs.com/wanghai0666/p/12350014.html" target="_blank">并項求和法</a> * <a href="https://www.cnblogs.com/wanghai0666/p/12350177.html" target="_blank">分組求和法</a> * <a href="https://www.cnblogs.com/wanghai0666/p/12350590.html" target="_blank">錯位相減求和法</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/8408629.html " target="_blank" >為什么說數列是特殊的函數 </a> ### 中階知識 * <a href=" https://www.cnblogs.com/wanghai0666/p/9428910.html " target="_blank" >求數列的通項公式 $a_n$ </a> * <a href="https://www.cnblogs.com/wanghai0666/p/10604125.html " target="_blank">利用 $a_n$ 與 $S_n$ 的關系求通項公式 $a_n$ </a> * <a href="https://www.cnblogs.com/wanghai0666/p/12932762.html" target="_blank">一類簡單而特殊數列的通項公式求法</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/10182054.html " target="_blank" >構造數列中的常見變形總結</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/9428928.html " target="_blank" >求數列的前 $n$ 項和 $S_n$ </a> * <a href=" https://www.cnblogs.com/wanghai0666/p/8329377.html " target="_blank" >求等差數列前 $n$ 項和 $S_n$ 的最值 </a> * <a href=" https://www.cnblogs.com/wanghai0666/p/7874937.html " target="_blank" >切線方程與數列</a> * [由 $a_{n+1}=2a_n$ 能得到等比數列嗎](https://www.cnblogs.com/wanghai0666/p/16007692.html) * [數列中限定 $a_n>0$ 的用意總結](https://www.cnblogs.com/wanghai0666/p/16004105.html) * <a href="http://www.cnblogs.com/wanghai0666/p/6259985.html " target="_blank" >數列習題</a> * <a href=" http://www.cnblogs.com/wanghai0666/p/6762835.html " target="_blank" >函數或數列的周期性</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/11229508.html " target="_blank">數列思維導圖</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10699699.html " target="_blank">數列中的傻瓜式運算</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10696741.html " target="_blank">數列的單調性</a> * <a href="https://www.cnblogs.com/wanghai0666/p/10685235.html " target="_blank">數列變形中隱含條件的指向作用</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/7874937.html " target="_blank" >切線方程與數列</a> * <a href=" https://www.cnblogs.com/wanghai0666/p/8747634.html " target="_blank" >數列的考查角度收集整理[1] </a> * <a href=" https://www.cnblogs.com/wanghai0666/p/8874548.html " target="_blank" >數列的考查角度收集整理[2] </a> * <a href="https://www.cnblogs.com/wanghai0666/p/10604133.html " target="_blank">構造法求數列通項公式</a> * [利用數列中相鄰三項的代數和求通項公式](https://www.cnblogs.com/wanghai0666/p/16182597.html) ### 高階知識 * <a href="https://www.cnblogs.com/wanghai0666/p/12349651.html" target="_blank">數列的構造</a> * [分形圖與二階數列](https://www.cnblogs.com/wanghai0666/p/14338302.html) * <a href="https://www.cnblogs.com/wanghai0666/p/12358514.html" target="_blank">等差等比數列通項公式的高階應用</a> * [含有符號數列的數列求和](https://www.cnblogs.com/wanghai0666/p/14254752.html) * <a href="https://www.cnblogs.com/wanghai0666/p/12570404.html" target="_blank">求數列通項公式的小眾方法</a> * [等差與等比數列綜合](https://www.cnblogs.com/wanghai0666/p/14209819.html) * [函數與數列的交匯融合](https://www.cnblogs.com/wanghai0666/p/14182404.html) * [一類簡單而特殊數列的通項公式求法](https://www.cnblogs.com/wanghai0666/p/12932762.html) * [數列專題思維導圖](https://www.cnblogs.com/wanghai0666/p/13539117.html) * [數列與數學歸納法](https://www.cnblogs.com/wanghai0666/p/13391527.html) * [從 $a_{n+1}$ 與 $a_n$ 的四則運算說起 ](https://www.cnblogs.com/wanghai0666/p/16114005.html)
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看