原文出處——>[Android日志系統驅動程序Logger源代碼分析](http://blog.csdn.net/luoshengyang/article/details/6595744)
我們知道,在Android系統中,提供了一個輕量級的日志系統,這個日志系統是以驅動程序的形式實現在內核空間的,而在用戶空間分別提供了Java接口和C/C++接口來使用這個日志系統,取決于你編寫的是Android應用程序還是系統組件。在前面的文章淺談Android系統開發中LOG的使用中,已經簡要地介紹了在Android應用程序開發中Log的使用方法,在這一篇文章中,我們將更進一步地分析Logger驅動程序的源代碼,使得我們對Android日志系統有一個深刻的認識。
既然Android 日志系統是以驅動程序的形式實現在內核空間的,我們就需要獲取Android內核源代碼來分析了,請參照前面在Ubuntu上下載、編譯和安裝Android最新源代碼和在Ubuntu上下載、編譯和安裝Android最新內核源代碼(Linux Kernel)兩篇文章,下載好Android源代碼工程。Logger驅動程序主要由兩個文件構成,分別是:
~~~
kernel/common/drivers/staging/android/logger.h
kernel/common/drivers/staging/android/logger.c
~~~
接下來,我們將分別介紹Logger驅動程序的相關數據結構,然后對Logger驅動程序源代碼進行情景分析,分別日志系統初始化情景、日志讀取情景和日志寫入情景。
**一. Logger驅動程序的相關數據結構**。
我們首先來看logger.h頭文件的內容:
~~~
#ifndef _LINUX_LOGGER_H
#define _LINUX_LOGGER_H
#include <linux/types.h>
#include <linux/ioctl.h>
struct logger_entry {
__u16 len; /* length of the payload */
__u16 __pad; /* no matter what, we get 2 bytes of padding */
__s32 pid; /* generating process's pid */
__s32 tid; /* generating process's tid */
__s32 sec; /* seconds since Epoch */
__s32 nsec; /* nanoseconds */
char msg[0]; /* the entry's payload */
};
#define LOGGER_LOG_RADIO "log_radio" /* radio-related messages */
#define LOGGER_LOG_EVENTS "log_events" /* system/hardware events */
#define LOGGER_LOG_MAIN "log_main" /* everything else */
#define LOGGER_ENTRY_MAX_LEN (4*1024)
#define LOGGER_ENTRY_MAX_PAYLOAD \
(LOGGER_ENTRY_MAX_LEN - sizeof(struct logger_entry))
#define __LOGGERIO 0xAE
#define LOGGER_GET_LOG_BUF_SIZE _IO(__LOGGERIO, 1) /* size of log */
#define LOGGER_GET_LOG_LEN _IO(__LOGGERIO, 2) /* used log len */
#define LOGGER_GET_NEXT_ENTRY_LEN _IO(__LOGGERIO, 3) /* next entry len */
#define LOGGER_FLUSH_LOG _IO(__LOGGERIO, 4) /* flush log */
#endif /* _LINUX_LOGGER_H */
~~~
struct logger_entry是一個用于描述一條Log記錄的結構體。len成員變量記錄了這條記錄的有效負載的長度,有效負載指定的日志記錄本身的長度,但是不包括用于描述這個記錄的struct logger_entry結構體。回憶一下我們調用android.util.Log接口來使用日志系統時,會指定日志的優先級別Priority、Tag字符串以及Msg字符串,Priority + Tag + Msg三者內容的長度加起來就是記錄的有效負載長度了。__pad成員變量是用來對齊結構體的。pid和tid成員變量分別用來記錄是哪條進程寫入了這條記錄。sec和nsec成員變量記錄日志寫的時間。msg成員變量記錄的就有效負載的內容了,它的大小由len成員變量來確定。
接著定義兩個宏:
~~~
#define LOGGER_ENTRY_MAX_LEN (4*1024)
#define LOGGER_ENTRY_MAX_PAYLOAD \
(LOGGER_ENTRY_MAX_LEN - sizeof(struct logger_entry))
~~~
從這兩個宏可以看出,每條日志記錄的有效負載長度加上結構體logger_entry的長度不能超過4K個字節。
logger.h文件中還定義了其它宏,讀者可以自己分析,在下面的分析中,碰到時,我們也會詳細解釋。
再來看logger.c文件中,其它相關數據結構的定義:
~~~
/*
* struct logger_log - represents a specific log, such as 'main' or 'radio'
*
* This structure lives from module insertion until module removal, so it does
* not need additional reference counting. The structure is protected by the
* mutex 'mutex'.
*/
struct logger_log {
unsigned char * buffer; /* the ring buffer itself */
struct miscdevice misc; /* misc device representing the log */
wait_queue_head_t wq; /* wait queue for readers */
struct list_head readers; /* this log's readers */
struct mutex mutex; /* mutex protecting buffer */
size_t w_off; /* current write head offset */
size_t head; /* new readers start here */
size_t size; /* size of the log */
};
/*
* struct logger_reader - a logging device open for reading
*
* This object lives from open to release, so we don't need additional
* reference counting. The structure is protected by log->mutex.
*/
struct logger_reader {
struct logger_log * log; /* associated log */
struct list_head list; /* entry in logger_log's list */
size_t r_off; /* current read head offset */
};
/* logger_offset - returns index 'n' into the log via (optimized) modulus */
#define logger_offset(n) ((n) & (log->size - 1))
~~~
結構體struct logger_log就是真正用來保存日志的地方了。buffer成員變量變是用保存日志信息的內存緩沖區,它的大小由size成員變量確定。從misc成員變量可以看出,logger驅動程序使用的設備屬于misc類型的設備,通過在Android模擬器上執行cat /proc/devices命令(可參考在Ubuntu上下載、編譯和安裝Android最新內核源代碼(Linux Kernel)一文),可以看出,misc類型設備的主設備號是10。關于主設備號的相關知識,可以參考Android學習啟動篇一文中提到的Linux Driver Development一書。wq成員變量是一個等待隊列,用于保存正在等待讀取日志的進程。readers成員變量用來保存當前正在讀取日志的進程,正在讀取日志的進程由結構體logger_reader來描述。mutex成員變量是一個互斥量,用來保護log的并發訪問。可以看出,這里的日志系統的讀寫問題,其實是一個生產者-消費者的問題,因此,需要互斥量來保護log的并發訪問。 w_off成員變量用來記錄下一條日志應該從哪里開始寫。head成員變量用來表示打開日志文件中,應該從哪一個位置開始讀取日志。
結構體struct logger_reader用來表示一個讀取日志的進程,log成員變量指向要讀取的日志緩沖區。list成員變量用來連接其它讀者進程。r_off成員變量表示當前要讀取的日志在緩沖區中的位置。
struct logger_log結構體中用于保存日志信息的內存緩沖區buffer是一個循環使用的環形緩沖區,緩沖區中保存的內容是以struct logger_entry為單位的,每個單位的組成為:
~~~
struct logger_entry | priority | tag | msg
~~~
由于是內存緩沖區buffer是一個循環使用的環形緩沖區,給定一個偏移值,它在buffer中的位置由下logger_offset來確定:
~~~
#define logger_offset(n) ((n) & (log->size - 1))
~~~
**二. Logger驅動程序模塊的初始化過程分析。**
繼續看logger.c文件,定義了三個日志設備:
~~~
/*
* Defines a log structure with name 'NAME' and a size of 'SIZE' bytes, which
* must be a power of two, greater than LOGGER_ENTRY_MAX_LEN, and less than
* LONG_MAX minus LOGGER_ENTRY_MAX_LEN.
*/
#define DEFINE_LOGGER_DEVICE(VAR, NAME, SIZE) \
static unsigned char _buf_ ## VAR[SIZE]; \
static struct logger_log VAR = { \
.buffer = _buf_ ## VAR, \
.misc = { \
.minor = MISC_DYNAMIC_MINOR, \
.name = NAME, \
.fops = &logger_fops, \
.parent = NULL, \
}, \
.wq = __WAIT_QUEUE_HEAD_INITIALIZER(VAR .wq), \
.readers = LIST_HEAD_INIT(VAR .readers), \
.mutex = __MUTEX_INITIALIZER(VAR .mutex), \
.w_off = 0, \
.head = 0, \
.size = SIZE, \
};
DEFINE_LOGGER_DEVICE(log_main, LOGGER_LOG_MAIN, 64*1024)
DEFINE_LOGGER_DEVICE(log_events, LOGGER_LOG_EVENTS, 256*1024)
DEFINE_LOGGER_DEVICE(log_radio, LOGGER_LOG_RADIO, 64*1024)
~~~
分別是log_main、log_events和log_radio,名稱分別LOGGER_LOG_MAIN、LOGGER_LOG_EVENTS和LOGGER_LOG_RADIO,它們的次設備號為MISC_DYNAMIC_MINOR,即為在注冊時動態分配。在logger.h文件中,有這三個宏的定義:
~~~
#define LOGGER_LOG_RADIO "log_radio" /* radio-related messages */
#define LOGGER_LOG_EVENTS "log_events" /* system/hardware events */
#define LOGGER_LOG_MAIN "log_main" /* everything else */
~~~
注釋說明了這三個日志設備的用途。注冊的日志設備文件操作方法為logger_fops:
~~~
static struct file_operations logger_fops = {
.owner = THIS_MODULE,
.read = logger_read,
.aio_write = logger_aio_write,
.poll = logger_poll,
.unlocked_ioctl = logger_ioctl,
.compat_ioctl = logger_ioctl,
.open = logger_open,
.release = logger_release,
};
~~~
日志驅動程序模塊的初始化函數為logger_init:
~~~
static int __init logger_init(void)
{
int ret;
ret = init_log(&log_main);
if (unlikely(ret))
goto out;
ret = init_log(&log_events);
if (unlikely(ret))
goto out;
ret = init_log(&log_radio);
if (unlikely(ret))
goto out;
out:
return ret;
}
device_initcall(logger_init);
~~~
logger_init函數通過調用init_log函數來初始化了上述提到的三個日志設備:
~~~
static int __init init_log(struct logger_log *log)
{
int ret;
ret = misc_register(&log->misc);
if (unlikely(ret)) {
printk(KERN_ERR "logger: failed to register misc "
"device for log '%s'!\n", log->misc.name);
return ret;
}
printk(KERN_INFO "logger: created %luK log '%s'\n",
(unsigned long) log->size >> 10, log->misc.name);
return 0;
}
~~~
init_log函數主要調用了misc_register函數來注冊misc設備,misc_register函數定義在kernel/common/drivers/char/misc.c文件中:
~~~
/**
* misc_register - register a miscellaneous device
* @misc: device structure
*
* Register a miscellaneous device with the kernel. If the minor
* number is set to %MISC_DYNAMIC_MINOR a minor number is assigned
* and placed in the minor field of the structure. For other cases
* the minor number requested is used.
*
* The structure passed is linked into the kernel and may not be
* destroyed until it has been unregistered.
*
* A zero is returned on success and a negative errno code for
* failure.
*/
int misc_register(struct miscdevice * misc)
{
struct miscdevice *c;
dev_t dev;
int err = 0;
INIT_LIST_HEAD(&misc->list);
mutex_lock(&misc_mtx);
list_for_each_entry(c, &misc_list, list) {
if (c->minor == misc->minor) {
mutex_unlock(&misc_mtx);
return -EBUSY;
}
}
if (misc->minor == MISC_DYNAMIC_MINOR) {
int i = DYNAMIC_MINORS;
while (--i >= 0)
if ( (misc_minors[i>>3] & (1 << (i&7))) == 0)
break;
if (i<0) {
mutex_unlock(&misc_mtx);
return -EBUSY;
}
misc->minor = i;
}
if (misc->minor < DYNAMIC_MINORS)
misc_minors[misc->minor >> 3] |= 1 << (misc->minor & 7);
dev = MKDEV(MISC_MAJOR, misc->minor);
misc->this_device = device_create(misc_class, misc->parent, dev, NULL,
"%s", misc->name);
if (IS_ERR(misc->this_device)) {
err = PTR_ERR(misc->this_device);
goto out;
}
/*
* Add it to the front, so that later devices can "override"
* earlier defaults
*/
list_add(&misc->list, &misc_list);
out:
mutex_unlock(&misc_mtx);
return err;
}
~~~
注冊完成后,通過device_create創建設備文件節點。這里,將創建/dev/log/main、/dev/log/events和/dev/log/radio三個設備文件,這樣,用戶空間就可以通過讀寫這三個文件和驅動程序進行交互。
**三. Logger驅動程序的日志記錄讀取過程分析。**
繼續看logger.c 文件,注冊的讀取日志設備文件的方法為logger_read:
~~~
/*
* logger_read - our log's read() method
*
* Behavior:
*
* - O_NONBLOCK works
* - If there are no log entries to read, blocks until log is written to
* - Atomically reads exactly one log entry
*
* Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read
* buffer is insufficient to hold next entry.
*/
static ssize_t logger_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct logger_reader *reader = file->private_data;
struct logger_log *log = reader->log;
ssize_t ret;
DEFINE_WAIT(wait);
start:
while (1) {
prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE);
mutex_lock(&log->mutex);
ret = (log->w_off == reader->r_off);
mutex_unlock(&log->mutex);
if (!ret)
break;
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
ret = -EINTR;
break;
}
schedule();
}
finish_wait(&log->wq, &wait);
if (ret)
return ret;
mutex_lock(&log->mutex);
/* is there still something to read or did we race? */
if (unlikely(log->w_off == reader->r_off)) {
mutex_unlock(&log->mutex);
goto start;
}
/* get the size of the next entry */
ret = get_entry_len(log, reader->r_off);
if (count < ret) {
ret = -EINVAL;
goto out;
}
/* get exactly one entry from the log */
ret = do_read_log_to_user(log, reader, buf, ret);
out:
mutex_unlock(&log->mutex);
return ret;
}
~~~
注意,在函數開始的地方,表示讀取日志上下文的struct logger_reader是保存在文件指針的private_data成員變量里面的,這是在打開設備文件時設置的,設備文件打開方法為logger_open:
~~~
/*
* logger_open - the log's open() file operation
*
* Note how near a no-op this is in the write-only case. Keep it that way!
*/
static int logger_open(struct inode *inode, struct file *file)
{
struct logger_log *log;
int ret;
ret = nonseekable_open(inode, file);
if (ret)
return ret;
log = get_log_from_minor(MINOR(inode->i_rdev));
if (!log)
return -ENODEV;
if (file->f_mode & FMODE_READ) {
struct logger_reader *reader;
reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL);
if (!reader)
return -ENOMEM;
reader->log = log;
INIT_LIST_HEAD(&reader->list);
mutex_lock(&log->mutex);
reader->r_off = log->head;
list_add_tail(&reader->list, &log->readers);
mutex_unlock(&log->mutex);
file->private_data = reader;
} else
file->private_data = log;
return 0;
}
~~~
新打開日志設備文件時,是從log->head位置開始讀取日志的,保存在struct logger_reader的成員變量r_off中。
start標號處的while循環是在等待日志可讀,如果已經沒有新的日志可讀了,那么就要讀進程就要進入休眠狀態,等待新的日志寫入后再喚醒,這是通過prepare_wait和schedule兩個調用來實現的。如果沒有新的日志可讀,并且設備文件不是以非阻塞O_NONBLOCK的方式打開或者這時有信號要處理(signal_pending(current)),那么就直接返回,不再等待新的日志寫入。判斷當前是否有新的日志可讀的方法是:
~~~
ret = (log->w_off == reader->r_off);
~~~
即判斷當前緩沖區的寫入位置和當前讀進程的讀取位置是否相等,如果不相等,則說明有新的日志可讀。
繼續向下看,如果有新的日志可讀,那么就,首先通過get_entry_len來獲取下一條可讀的日志記錄的長度,從這里可以看出,日志讀取進程是以日志記錄為單位進行讀取的,一次只讀取一條記錄。get_entry_len的函數實現如下:
~~~
/*
* get_entry_len - Grabs the length of the payload of the next entry starting
* from 'off'.
*
* Caller needs to hold log->mutex.
*/
static __u32 get_entry_len(struct logger_log *log, size_t off)
{
__u16 val;
switch (log->size - off) {
case 1:
memcpy(&val, log->buffer + off, 1);
memcpy(((char *) &val) + 1, log->buffer, 1);
break;
default:
memcpy(&val, log->buffer + off, 2);
}
return sizeof(struct logger_entry) + val;
}
~~~
上面我們提到,每一條日志記錄是由兩大部分組成的,一個用于描述這條日志記錄的結構體struct logger_entry,另一個是記錄體本身,即有效負載。結構體struct logger_entry的長度是固定的,只要知道有效負載的長度,就可以知道整條日志記錄的長度了。而有效負載的長度是記錄在結構體struct logger_entry的成員變量len中,而len成員變量的地址與struct logger_entry的地址相同,因此,只需要讀取記錄的開始位置的兩個字節就可以了。又由于日志記錄緩沖區是循環使用的,這兩個節字有可能是第一個字節存放在緩沖區最后一個字節,而第二個字節存放在緩沖區的第一個節,除此之外,這兩個字節都是連在一起的。因此,分兩種情況來考慮,對于前者,分別通過讀取緩沖區最后一個字節和第一個字節來得到日志記錄的有效負載長度到本地變量val中,對于后者,直接讀取連續兩個字節的值到本地變量val中。這兩種情況是通過判斷日志緩沖區的大小和要讀取的日志記錄在緩沖區中的位置的差值來區別的,如果相差1,就說明是前一種情況了。最后,把有效負載的長度val加上struct logger_entry的長度就得到了要讀取的日志記錄的總長度了。
接著往下看,得到了要讀取的記錄的長度,就調用do_read_log_to_user函數來執行真正的讀取動作:
~~~
static ssize_t do_read_log_to_user(struct logger_log *log,
struct logger_reader *reader,
char __user *buf,
size_t count)
{
size_t len;
/*
* We read from the log in two disjoint operations. First, we read from
* the current read head offset up to 'count' bytes or to the end of
* the log, whichever comes first.
*/
len = min(count, log->size - reader->r_off);
if (copy_to_user(buf, log->buffer + reader->r_off, len))
return -EFAULT;
/*
* Second, we read any remaining bytes, starting back at the head of
* the log.
*/
if (count != len)
if (copy_to_user(buf + len, log->buffer, count - len))
return -EFAULT;
reader->r_off = logger_offset(reader->r_off + count);
return count;
}
~~~
這個函數簡單地調用copy_to_user函數來把位于內核空間的日志緩沖區指定的內容拷貝到用戶空間的內存緩沖區就可以了,同時,把當前讀取日志進程的上下文信息中的讀偏移r_off前進到下一條日志記錄的開始的位置上。
**四. Logger驅動程序的日志記錄寫入過程分析。**
繼續看logger.c 文件,注冊的寫入日志設備文件的方法為logger_aio_write:
~~~
/*
* logger_aio_write - our write method, implementing support for write(),
* writev(), and aio_write(). Writes are our fast path, and we try to optimize
* them above all else.
*/
ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t ppos)
{
struct logger_log *log = file_get_log(iocb->ki_filp);
size_t orig = log->w_off;
struct logger_entry header;
struct timespec now;
ssize_t ret = 0;
now = current_kernel_time();
header.pid = current->tgid;
header.tid = current->pid;
header.sec = now.tv_sec;
header.nsec = now.tv_nsec;
header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
/* null writes succeed, return zero */
if (unlikely(!header.len))
return 0;
mutex_lock(&log->mutex);
/*
* Fix up any readers, pulling them forward to the first readable
* entry after (what will be) the new write offset. We do this now
* because if we partially fail, we can end up with clobbered log
* entries that encroach on readable buffer.
*/
fix_up_readers(log, sizeof(struct logger_entry) + header.len);
do_write_log(log, &header, sizeof(struct logger_entry));
while (nr_segs-- > 0) {
size_t len;
ssize_t nr;
/* figure out how much of this vector we can keep */
len = min_t(size_t, iov->iov_len, header.len - ret);
/* write out this segment's payload */
nr = do_write_log_from_user(log, iov->iov_base, len);
if (unlikely(nr < 0)) {
log->w_off = orig;
mutex_unlock(&log->mutex);
return nr;
}
iov++;
ret += nr;
}
mutex_unlock(&log->mutex);
/* wake up any blocked readers */
wake_up_interruptible(&log->wq);
return ret;
}
~~~
輸入的參數iocb表示io上下文,iov表示要寫入的內容,長度為nr_segs,表示有nr_segs個段的內容要寫入。我們知道,每個要寫入的日志的結構形式為:
~~~
struct logger_entry | priority | tag | msg
~~~
其中, priority、tag和msg這三個段的內容是由iov參數從用戶空間傳遞下來的,分別對應iov里面的三個元素。而logger_entry是由內核空間來構造的:
~~~
struct logger_entry header;
struct timespec now;
now = current_kernel_time();
header.pid = current->tgid;
header.tid = current->pid;
header.sec = now.tv_sec;
header.nsec = now.tv_nsec;
header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
~~~
然后調用do_write_log首先把logger_entry結構體寫入到日志緩沖區中:
~~~
/*
* do_write_log - writes 'len' bytes from 'buf' to 'log'
*
* The caller needs to hold log->mutex.
*/
static void do_write_log(struct logger_log *log, const void *buf, size_t count)
{
size_t len;
len = min(count, log->size - log->w_off);
memcpy(log->buffer + log->w_off, buf, len);
if (count != len)
memcpy(log->buffer, buf + len, count - len);
log->w_off = logger_offset(log->w_off + count);
}
~~~
由于logger_entry是內核堆棧空間分配的,直接用memcpy拷貝就可以了。
接著,通過一個while循環把iov的內容寫入到日志緩沖區中,也就是日志的優先級別priority、日志Tag和日志主體Msg:
~~~
while (nr_segs-- > 0) {
size_t len;
ssize_t nr;
/* figure out how much of this vector we can keep */
len = min_t(size_t, iov->iov_len, header.len - ret);
/* write out this segment's payload */
nr = do_write_log_from_user(log, iov->iov_base, len);
if (unlikely(nr < 0)) {
log->w_off = orig;
mutex_unlock(&log->mutex);
return nr;
}
iov++;
ret += nr;
}
~~~
由于iov的內容是由用戶空間傳下來的,需要調用do_write_log_from_user來寫入:
~~~
static ssize_t do_write_log_from_user(struct logger_log *log,
const void __user *buf, size_t count)
{
size_t len;
len = min(count, log->size - log->w_off);
if (len && copy_from_user(log->buffer + log->w_off, buf, len))
return -EFAULT;
if (count != len)
if (copy_from_user(log->buffer, buf + len, count - len))
return -EFAULT;
log->w_off = logger_offset(log->w_off + count);
return count;
}
~~~
這里,我們還漏了一個重要的步驟:
~~~
/*
* Fix up any readers, pulling them forward to the first readable
* entry after (what will be) the new write offset. We do this now
* because if we partially fail, we can end up with clobbered log
* entries that encroach on readable buffer.
*/
fix_up_readers(log, sizeof(struct logger_entry) + header.len);
~~~
為什么要調用fix_up_reader這個函數呢?這個函數又是作什么用的呢?是這樣的,由于日志緩沖區是循環使用的,即舊的日志記錄如果沒有及時讀取,而緩沖區的內容又已經用完時,就需要覆蓋舊的記錄來容納新的記錄。而這部分將要被覆蓋的內容,有可能是某些reader的下一次要讀取的日志所在的位置,以及為新的reader準備的日志開始讀取位置head所在的位置。因此,需要調整這些位置,使它們能夠指向一個新的有效的位置。我們來看一下fix_up_reader函數的實現:
~~~
/*
* fix_up_readers - walk the list of all readers and "fix up" any who were
* lapped by the writer; also do the same for the default "start head".
* We do this by "pulling forward" the readers and start head to the first
* entry after the new write head.
*
* The caller needs to hold log->mutex.
*/
static void fix_up_readers(struct logger_log *log, size_t len)
{
size_t old = log->w_off;
size_t new = logger_offset(old + len);
struct logger_reader *reader;
if (clock_interval(old, new, log->head))
log->head = get_next_entry(log, log->head, len);
list_for_each_entry(reader, &log->readers, list)
if (clock_interval(old, new, reader->r_off))
reader->r_off = get_next_entry(log, reader->r_off, len);
}
~~~
判斷log->head和所有讀者reader的當前讀偏移reader->r_off是否在被覆蓋的區域內,如果是,就需要調用get_next_entry來取得下一個有效的記錄的起始位置來調整當前位置:
~~~
/*
* get_next_entry - return the offset of the first valid entry at least 'len'
* bytes after 'off'.
*
* Caller must hold log->mutex.
*/
static size_t get_next_entry(struct logger_log *log, size_t off, size_t len)
{
size_t count = 0;
do {
size_t nr = get_entry_len(log, off);
off = logger_offset(off + nr);
count += nr;
} while (count < len);
return off;
}
~~~
而判斷log->head和所有讀者reader的當前讀偏移reader->r_off是否在被覆蓋的區域內,是通過clock_interval函數來實現的:
~~~
/*
* clock_interval - is a < c < b in mod-space? Put another way, does the line
* from a to b cross c?
*/
static inline int clock_interval(size_t a, size_t b, size_t c)
{
if (b < a) {
if (a < c || b >= c)
return 1;
} else {
if (a < c && b >= c)
return 1;
}
return 0;
}
~~~
最后,日志寫入完畢,還需要喚醒正在等待新日志的reader進程:
~~~
/* wake up any blocked readers */
wake_up_interruptible(&log->wq);
~~~
至此, Logger驅動程序的主要邏輯就分析完成了,還有其它的一些接口,如logger_poll、 logger_ioctl和logger_release函數,比較簡單,讀取可以自行分析。這里還需要提到的一點是,由于Logger驅動程序模塊在退出系統時,是不會卸載的,所以這個模塊沒有module_exit函數,而對于模塊里面定義的對象,也沒有用對引用計數技術。
這篇文章著重介紹了Android日志系統在內核空間的實現,在下一篇文章中,我們將接著介紹在用戶空間中,提供給Android應用程序使用的Java和C/C++ LOG調用接口的實現過程,敬請關注。
- 前言
- Android組件設計思想
- Android源代碼開發和調試環境搭建
- Android源代碼下載和編譯
- Android源代碼情景分析法
- Android源代碼調試分析法
- 手把手教你為手機編譯ROM
- 在Ubuntu上下載、編譯和安裝Android最新源代碼
- 在Ubuntu上下載、編譯和安裝Android最新內核源代碼(Linux Kernel)
- 如何單獨編譯Android源代碼中的模塊
- 在Ubuntu上為Android系統編寫Linux內核驅動程序
- 在Ubuntu上為Android系統內置C可執行程序測試Linux內核驅動程序
- 在Ubuntu上為Android增加硬件抽象層(HAL)模塊訪問Linux內核驅動程序
- 在Ubuntu為Android硬件抽象層(HAL)模塊編寫JNI方法提供Java訪問硬件服務接口
- 在Ubuntu上為Android系統的Application Frameworks層增加硬件訪問服務
- 在Ubuntu上為Android系統內置Java應用程序測試Application Frameworks層的硬件服務
- Android源代碼倉庫及其管理工具Repo分析
- Android編譯系統簡要介紹和學習計劃
- Android編譯系統環境初始化過程分析
- Android源代碼編譯命令m/mm/mmm/make分析
- Android系統鏡像文件的打包過程分析
- 從CM刷機過程和原理分析Android系統結構
- Android系統架構概述
- Android系統整體架構
- android專用驅動
- Android硬件抽象層HAL
- Android應用程序組件
- Android應用程序框架
- Android用戶界面架構
- Android虛擬機之Dalvik虛擬機
- Android硬件抽象層
- Android硬件抽象層(HAL)概要介紹和學習計劃
- Android專用驅動
- Android Logger驅動系統
- Android日志系統驅動程序Logger源代碼分析
- Android應用程序框架層和系統運行庫層日志系統源代碼分析
- Android日志系統Logcat源代碼簡要分析
- Android Binder驅動系統
- Android進程間通信(IPC)機制Binder簡要介紹和學習計劃
- 淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路
- 淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路
- Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析
- Android系統進程間通信(IPC)機制Binder中的Client獲得Server遠程接口過程源代碼分析
- Android系統進程間通信Binder機制在應用程序框架層的Java接口源代碼分析
- Android Ashmem驅動系統
- Android系統匿名共享內存Ashmem(Anonymous Shared Memory)簡要介紹和學習計劃
- Android系統匿名共享內存Ashmem(Anonymous Shared Memory)驅動程序源代碼分析
- Android系統匿名共享內存Ashmem(Anonymous Shared Memory)在進程間共享的原理分析
- Android系統匿名共享內存(Anonymous Shared Memory)C++調用接口分析
- Android應用程序進程管理
- Android應用程序進程啟動過程的源代碼分析
- Android系統進程Zygote啟動過程的源代碼分析
- Android系統默認Home應用程序(Launcher)的啟動過程源代碼分析
- Android應用程序消息機制
- Android應用程序消息處理機制(Looper、Handler)分析
- Android應用程序線程消息循環模型分析
- Android應用程序輸入事件分發和處理機制
- Android應用程序鍵盤(Keyboard)消息處理機制分析
- Android應用程序UI架構
- Android系統的開機畫面顯示過程分析
- Android幀緩沖區(Frame Buffer)硬件抽象層(HAL)模塊Gralloc的實現原理分析
- SurfaceFlinger
- Android系統Surface機制的SurfaceFlinger服務
- SurfaceFlinger服務簡要介紹和學習計劃
- 啟動過程分析
- 對幀緩沖區(Frame Buffer)的管理分析
- 線程模型分析
- 渲染應用程序UI的過程分析
- Android應用程序與SurfaceFlinger服務的關系
- 概述和學習計劃
- 連接過程分析
- 共享UI元數據(SharedClient)的創建過程分析
- 創建Surface的過程分析
- 渲染Surface的過程分析
- Android應用程序窗口(Activity)
- 實現框架簡要介紹和學習計劃
- 運行上下文環境(Context)的創建過程分析
- 窗口對象(Window)的創建過程分析
- 視圖對象(View)的創建過程分析
- 與WindowManagerService服務的連接過程分析
- 繪圖表面(Surface)的創建過程分析
- 測量(Measure)、布局(Layout)和繪制(Draw)過程分析
- WindowManagerService
- WindowManagerService的簡要介紹和學習計劃
- 計算Activity窗口大小的過程分析
- 對窗口的組織方式分析
- 對輸入法窗口(Input Method Window)的管理分析
- 對壁紙窗口(Wallpaper Window)的管理分析
- 計算窗口Z軸位置的過程分析
- 顯示Activity組件的啟動窗口(Starting Window)的過程分析
- 切換Activity窗口(App Transition)的過程分析
- 顯示窗口動畫的原理分析
- Android控件TextView的實現原理分析
- Android視圖SurfaceView的實現原理分析
- Android應用程序UI硬件加速渲染
- 簡要介紹和學習計劃
- 環境初始化過程分析
- 預加載資源地圖集服務(Asset Atlas Service)分析
- Display List構建過程分析
- Display List渲染過程分析
- 動畫執行過程分析
- Android應用程序資源管理框架
- Android資源管理框架(Asset Manager)
- Asset Manager 簡要介紹和學習計劃
- 編譯和打包過程分析
- Asset Manager的創建過程分析
- 查找過程分析
- Dalvik虛擬機和ART虛擬機
- Dalvik虛擬機
- Dalvik虛擬機簡要介紹和學習計劃
- Dalvik虛擬機的啟動過程分析
- Dalvik虛擬機的運行過程分析
- Dalvik虛擬機JNI方法的注冊過程分析
- Dalvik虛擬機進程和線程的創建過程分析
- Dalvik虛擬機垃圾收集機制簡要介紹和學習計劃
- Dalvik虛擬機Java堆創建過程分析
- Dalvik虛擬機為新創建對象分配內存的過程分析
- Dalvik虛擬機垃圾收集(GC)過程分析
- ART虛擬機
- Android ART運行時無縫替換Dalvik虛擬機的過程分析
- Android運行時ART簡要介紹和學習計劃
- Android運行時ART加載OAT文件的過程分析
- Android運行時ART加載類和方法的過程分析
- Android運行時ART執行類方法的過程分析
- ART運行時垃圾收集機制簡要介紹和學習計劃
- ART運行時Java堆創建過程分析
- ART運行時為新創建對象分配內存的過程分析
- ART運行時垃圾收集(GC)過程分析
- ART運行時Compacting GC簡要介紹和學習計劃
- ART運行時Compacting GC堆創建過程分析
- ART運行時Compacting GC為新創建對象分配內存的過程分析
- ART運行時Semi-Space(SS)和Generational Semi-Space(GSS)GC執行過程分析
- ART運行時Mark-Compact( MC)GC執行過程分析
- ART運行時Foreground GC和Background GC切換過程分析
- Android安全機制
- SEAndroid安全機制簡要介紹和學習計劃
- SEAndroid安全機制框架分析
- SEAndroid安全機制中的文件安全上下文關聯分析
- SEAndroid安全機制中的進程安全上下文關聯分析
- SEAndroid安全機制對Android屬性訪問的保護分析
- SEAndroid安全機制對Binder IPC的保護分析
- 從NDK在非Root手機上的調試原理探討Android的安全機制
- APK防反編譯
- Android視頻硬解穩定性問題探討和處理
- Android系統的智能指針(輕量級指針、強指針和弱指針)的實現原理分析
- Android應用程序安裝過程源代碼分析
- Android應用程序啟動過程源代碼分析
- 四大組件源代碼分析
- Activity
- Android應用程序的Activity啟動過程簡要介紹和學習計劃
- Android應用程序內部啟動Activity過程(startActivity)的源代碼分析
- 解開Android應用程序組件Activity的"singleTask"之謎
- Android應用程序在新的進程中啟動新的Activity的方法和過程分析
- Service
- Android應用程序綁定服務(bindService)的過程源代碼分析
- ContentProvider
- Android應用程序組件Content Provider簡要介紹和學習計劃
- Android應用程序組件Content Provider應用實例
- Android應用程序組件Content Provider的啟動過程源代碼分析
- Android應用程序組件Content Provider在應用程序之間共享數據的原理分析
- Android應用程序組件Content Provider的共享數據更新通知機制分析
- BroadcastReceiver
- Android系統中的廣播(Broadcast)機制簡要介紹和學習計劃
- Android應用程序注冊廣播接收器(registerReceiver)的過程分析
- Android應用程序發送廣播(sendBroadcast)的過程分析