<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                企業??AI智能體構建引擎,智能編排和調試,一鍵部署,支持知識庫和私有化部署方案 廣告
                ## 特征選擇 > `SelectKBest` - 根據k最高分選擇功能。 ### 構造函數參數 `$k`(int) - 要選擇的頂級特征數,休息將被刪除(默認值:10) `$scoringFunction`(ScoringFunction) - 獲取樣本和目標并返回帶分數的數組的函數(默認值:ANOVAFValue) ``` use Phpml\FeatureSelection\SelectKBest; $transformer = new SelectKBest(2); ``` ***** ## 使用示例 作為示例,我們可以在Iris數據集上執行特征選擇,以僅檢索兩個最佳特征,如下所示: ``` use Phpml\FeatureSelection\SelectKBest; use Phpml\Dataset\Demo\IrisDataset; $dataset = new IrisDataset(); $selector = new SelectKBest(2); $selector->fit($samples = $dataset->getSamples(), $dataset->getTargets()); $selector->transform($samples); /* $samples[0] = [1.4, 0.2]; */ ``` ## 評分 您可以獲得包含每個要素的計算得分的數組。值越高意味著給定的特征更適合學習。當然,評級取決于所使用的評分函數。 ``` use Phpml\FeatureSelection\SelectKBest; use Phpml\Dataset\Demo\IrisDataset; $dataset = new IrisDataset(); $selector = new SelectKBest(2); $selector->fit($samples = $dataset->getSamples(), $dataset->getTargets()); $selector->scores(); /* ..array(4) { [0]=> float(119.26450218451) [1]=> float(47.364461402997) [2]=> float(1179.0343277002) [3]=> float(959.32440572573) } */ ``` ***** ### 評分功能 可用的評分功能: 對于分類: - `ANOVAFValue`單因素方差分析檢驗2個或更多組具有相同總體平均值的原假設。該測試適用于來自兩個或更多組的樣品,可能具有不同的尺寸。 對于回歸: - `UnivariateLinearRegression`用于測試單個回歸量的效果的快速線性模型,順序地用于許多回歸量。這分兩步完成: - 1.計算每個回歸量與目標之間的互相關,即`((X[:,i] - mean(X [:,i]))*(y - mean_y))/(std(X [:,i])* std(y))`。- 2.它被轉換為F分數 ## Pipeline `SelectKBest`實現了`Transformer`接口,因此它可以用作`Pipeline`的一部分: ``` use Phpml\FeatureSelection\SelectKBest; use Phpml\Classification\SVC; use Phpml\FeatureExtraction\TfIdfTransformer; use Phpml\Pipeline; $transformers = [ new TfIdfTransformer(), new SelectKBest(3) ]; $estimator = new SVC(); $pipeline = new Pipeline($transformers, $estimator); ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看