<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                合規國際互聯網加速 OSASE為企業客戶提供高速穩定SD-WAN國際加速解決方案。 廣告
                ## KNearestNeighbors分類器 > 實現k近鄰算法的分類器。 ### 構造函數參數 `$k` - 要掃描的最近鄰居數(默認值:3) `$distanceMetric` - 距離對象,默認為歐幾里德(見[官方文檔](https://php-ml.readthedocs.io/en/latest/math/distance/)) ``` $classifier = new KNearestNeighbors($k=4); $classifier = new KNearestNeighbors($k=3, new Minkowski($lambda=4)); ``` ***** ## 訓練 訓練分類器只需提供訓練樣本(`$samples`)和標簽(如`$labels`)。例: ``` $samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]]; $labels = ['a', 'a', 'a', 'b', 'b', 'b']; $classifier = new KNearestNeighbors(); $classifier->train($samples, $labels); ``` 您可以使用多個數據集訓練分類器,預測將基于所有訓練數據。 ***** ## 預測 預測樣本標簽使用`predict`方法。您可以提供一個樣本或樣本數組: ``` $classifier->predict([3, 2]); // return 'b' $classifier->predict([[3, 2], [1, 5]]); // return ['b', 'a'] ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看