<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ??一站式輕松地調用各大LLM模型接口,支持GPT4、智譜、豆包、星火、月之暗面及文生圖、文生視頻 廣告
                ## 缺失值補全 > 由于各種原因,許多真實世界數據集包含缺失值,通常編碼為空格,NaN或其他占位符。要解決此問題,您可以使用`Imputer`類。 ### 構造函數參數 `$missingValue`(mixed) - 此值將被替換(默認為null) `$strategy`(Strategy) - 估算策略(讀取使用:`MeanStrategy`,`MedianStrategy`,`MostFrequentStrategy`) `$axis`(int) - 策略的軸,`Imputer :: AXIS_COLUMN`或`Imputer :: AXIS_ROW` `$samples`(array) - 要訓練的樣本數組 ``` $imputer = new Imputer(null, new MeanStrategy(), Imputer::AXIS_COLUMN); $imputer = new Imputer(null, new MedianStrategy(), Imputer::AXIS_ROW); ``` ### 策略 `MeanStrategy` - 使用沿軸的平均值替換缺失值 `MedianStrategy`- 使用沿軸的中位數替換缺失值 `MostFrequentStrategy` - 使用沿軸最頻繁的值替換缺失 ### 使用示例 ``` use Phpml\Preprocessing\Imputer; use Phpml\Preprocessing\Imputer\Strategy\MeanStrategy; $data = [ [1, null, 3, 4], [4, 3, 2, 1], [null, 6, 7, 8], [8, 7, null, 5], ]; $imputer = new Imputer(null, new MeanStrategy(), Imputer::AXIS_COLUMN); $imputer->fit($data); $imputer->transform($data); /* $data = [ [1, 5.33, 3, 4], [4, 3, 2, 1], [4.33, 6, 7, 8], [8, 7, 4, 5], ]; */ ``` 您還可以使用`$samples`構造函數參數而不是`fit`方法: ``` use Phpml\Preprocessing\Imputer; use Phpml\Preprocessing\Imputer\Strategy\MeanStrategy; $data = [ [1, null, 3, 4], [4, 3, 2, 1], [null, 6, 7, 8], [8, 7, null, 5], ]; $imputer = new Imputer(null, new MeanStrategy(), Imputer::AXIS_COLUMN, $data); $imputer->transform($data); ```
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看