## 標準化
> 歸一化是將單個樣本縮放為具有單位范數的過程。
## L2 norm
[http://mathworld.wolfram.com/L2-Norm.html](http://mathworld.wolfram.com/L2-Norm.html)
### 例:
```
use Phpml\Preprocessing\Normalizer;
$samples = [
[1, -1, 2],
[2, 0, 0],
[0, 1, -1],
];
$normalizer = new Normalizer();
$normalizer->preprocess($samples);
/*
$samples = [
[0.4, -0.4, 0.81],
[1.0, 0.0, 0.0],
[0.0, 0.7, -0.7],
];
*/
```
*****
## L1 norm
[http://mathworld.wolfram.com/L1-Norm.html](http://mathworld.wolfram.com/L1-Norm.html)
### 例:
```
use Phpml\Preprocessing\Normalizer;
$samples = [
[1, -1, 2],
[2, 0, 0],
[0, 1, -1],
];
$normalizer = new Normalizer(Normalizer::NORM_L1);
$normalizer->preprocess($samples);
/*
$samples = [
[0.25, -0.25, 0.5],
[1.0, 0.0, 0.0],
[0.0, 0.5, -0.5],
];
*/
```
- 基本介紹
- 關聯規則學習
- 分類
- SVC
- k近鄰算法
- NaiveBayes
- 回歸
- 最小二乘法
- SVR
- 聚類
- k均值聚類算法
- DBSCAN聚類算法
- 公
- 準確性
- 混亂矩陣
- 分類報告
- 工作流程
- 神經網絡
- 交叉驗證
- 隨機拆分
- 分層隨機分裂
- 特征選擇
- 方差閾值
- 特征選擇
- 預處理
- 標準化
- 缺失值補全
- 特征提取(自然語言)
- 令牌計數矢量化器(文本處理)
- Tf-idf轉換
- 數據集
- ArrayDataset
- CsvDataset
- FilesDataset
- SvmDataset
- MnistDataset
- 準備使用數據集
- Iris Dataset
- Wine Dataset
- Glass Dataset
- 模型管理
- 數學
- 距離
- 矩陣
- 組
- 統計