## 距離
> 選定的算法需要使用函數來計算距離。
### 歐幾里德
計算類歐氏距離。

要計算歐幾里德距離:
```
$a = [4, 6];
$b = [2, 5];
$euclidean = new Euclidean();
$euclidean->distance($a, $b);
// return 2.2360679774998
```
*****
### 曼哈頓
用于計算曼哈頓距離的類:

要計算曼哈頓距離:
```
$a = [4, 6];
$b = [2, 5];
$manhattan = new Manhattan();
$manhattan->distance($a, $b);
// return 3
```
*****
### 切比雪夫
計算Chebyshev距離的類。

要計算Chebyshev距離:
```
$a = [4, 6];
$b = [2, 5];
$chebyshev = new Chebyshev();
$chebyshev->distance($a, $b);
// return 2
```
*****
### 閔可夫斯基
用于計算Minkowski距離的類。

要計算Minkowski距離:
```
$a = [4, 6];
$b = [2, 5];
$minkowski = new Minkowski();
$minkowski->distance($a, $b);
// return 2.080
```
您可以提供`lambda`參數:
```
$a = [6, 10, 3];
$b = [2, 5, 5];
$minkowski = new Minkowski($lambda = 5);
$minkowski->distance($a, $b);
// return 5.300
```
*****
### 自定義距離
要應用自己的距離使用距離界面功能。例
```
class CustomDistance implements Distance
{
/**
* @param array $a
* @param array $b
*
* @return float
*/
public function distance(array $a, array $b) : float
{
$distance = [];
$count = count($a);
for ($i = 0; $i < $count; ++$i) {
$distance[] = $a[$i] * $b[$i];
}
return min($distance);
}
}
```
- 基本介紹
- 關聯規則學習
- 分類
- SVC
- k近鄰算法
- NaiveBayes
- 回歸
- 最小二乘法
- SVR
- 聚類
- k均值聚類算法
- DBSCAN聚類算法
- 公
- 準確性
- 混亂矩陣
- 分類報告
- 工作流程
- 神經網絡
- 交叉驗證
- 隨機拆分
- 分層隨機分裂
- 特征選擇
- 方差閾值
- 特征選擇
- 預處理
- 標準化
- 缺失值補全
- 特征提取(自然語言)
- 令牌計數矢量化器(文本處理)
- Tf-idf轉換
- 數據集
- ArrayDataset
- CsvDataset
- FilesDataset
- SvmDataset
- MnistDataset
- 準備使用數據集
- Iris Dataset
- Wine Dataset
- Glass Dataset
- 模型管理
- 數學
- 距離
- 矩陣
- 組
- 統計