<ruby id="bdb3f"></ruby>

    <p id="bdb3f"><cite id="bdb3f"></cite></p>

      <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
        <p id="bdb3f"><cite id="bdb3f"></cite></p>

          <pre id="bdb3f"></pre>
          <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

          <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
          <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

          <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                <ruby id="bdb3f"></ruby>

                ThinkChat2.0新版上線,更智能更精彩,支持會話、畫圖、視頻、閱讀、搜索等,送10W Token,即刻開啟你的AI之旅 廣告
                [TOC] # 線程同步的幾種方法 1. 用什么關鍵字修飾同步方法 ? 用synchronized關鍵字修飾同步方法 2. 同步有幾種實現方法,都是什么?分別是synchronized,wait與notify ~~~ wait():使一個線程處于等待狀態,并且釋放所持有的對象的lock。 sleep():使一個正在運行的線程處于睡眠狀態,是一個靜態方法,調用此方法要捕捉InterruptedException異常。 notify():喚醒一個處于等待狀態的線程,注意的是在調用此方法的時候,并不能確切的喚醒某一個等待狀態的線程,而是由JVM確定喚醒哪個線程,而且不是按優先級。 notityAll():喚醒所有處入等待狀態的線程,注意并不是給所有喚醒線程一個對象的鎖,而是讓它們競爭。 ~~~ 3. 特殊域變量,volatile,注意不能修飾final的變量. a. volatile關鍵字為域變量的訪問提供了一種免鎖機制 b. 使用volatile修飾域相當于告訴虛擬機該域可能會被其他線程更新 c. 因此每次使用該域就要重新計算,而不是使用寄存器中的值 d. volatile不會提供任何原子操作,它也不能用來修飾final類型的變量 4. 使用重入鎖ReentrantLock 在JavaSE5.0中新增了一個Java.util.concurrent包來支持同步。ReentrantLock類是可重入、互斥、實現了Lock接口的鎖. 5. 使用局部變量ThreadLocal實現 # synchronized synchronized是用來實現線程同步的!!! ~~~ 加同步格式: synchronized( 需要一個任意的對象(鎖) ){ 代碼塊中放操作共享數據的代碼。 } ~~~ ## synchronized的缺陷 synchronized是java中的一個關鍵字,也就是說是Java語言內置的特性。 如果一個代碼塊被synchronized修飾了,當一個線程獲取了對應的鎖,并執行該代碼塊時,其他線程便只能一直等待,等待獲取鎖的線程釋放鎖,而這里獲取鎖的線程釋放鎖只會有兩種情況: 1. 獲取鎖的線程執行完了該代碼塊,然后線程釋放對鎖的占有; 2. 線程執行發生異常,此時JVM會讓線程自動釋放鎖。 例子1:   如果這個獲取鎖的線程由于要等待IO或者其他原因(比如調用sleep方法)被阻塞了,但是又沒有釋放鎖,其他線程便只能干巴巴地等待,試想一下,這多么影響程序執行效率。   因此就需要有一種機制可以不讓等待的線程一直無期限地等待下去(比如只等待一定的時間或者能夠響應中斷),通過Lock就可以辦到。 例子2: 當有多個線程讀寫文件時,讀操作和寫操作會發生沖突現象,寫操作和寫操作會發生沖突現象,但是讀操作和讀操作不會發生沖突現象。   但是采用synchronized關鍵字來實現同步的話,就會導致一個問題: 如果多個線程都只是進行讀操作,當一個線程在進行讀操作時,其他線程只能等待無法進行讀操作。   因此就需要一種機制來使得多個線程都只是進行讀操作時,線程之間不會發生沖突,通過Lock就可以辦到。   另外,通過Lock可以知道線程有沒有成功獲取到鎖。這個是synchronized無法辦到的。   總的來說,也就是說Lock提供了比synchronized更多的功能。 # lock ## lock和synchronized的區別   1. Lock不是Java語言內置的,synchronized是Java語言的關鍵字,因此是內置特性。Lock是一個類,通過這個類可以實現同步訪問;   2. Lock和synchronized有一點非常大的不同,采用synchronized不需要用戶去手動釋放鎖,當synchronized方法或者synchronized代碼塊執行完之后,系統會自動讓線程釋放對鎖的占用;而Lock則必須要用戶去手動釋放鎖,如果沒有主動釋放鎖,就有可能導致出現死鎖現象。 java.util.concurrent.locks包下常用的類Lock 首先要說明的就是Lock,通過查看Lock的源碼可知,Lock是一個接口: ~~~ public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit) throws InterruptedException; void unlock(); } ~~~ 下面來逐個講述Lock接口中每個方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用來獲取鎖的。unLock()方法是用來釋放鎖的。newCondition()這個方法暫且不在此講述,會在后面的線程協作一文中講述。 在Lock中聲明了四個方法來獲取鎖,那么這四個方法有何區別呢? ## lock 首先lock()方法是平常使用得最多的一個方法,就是用來獲取鎖。如果鎖已被其他線程獲取,則進行等待。 由于在前面講到如果采用Lock,必須主動去釋放鎖,并且在發生異常時,不會自動釋放鎖。因此一般來說,使用Lock必須在try{}catch{}塊中進行,并且將釋放鎖的操作放在finally塊中進行,以保證鎖一定被被釋放,防止死鎖的發生。通常使用Lock來進行同步的話,是以下面這種形式去使用的: ~~~ Lock lock = ...; lock.lock(); try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 } ~~~ ## tryLock tryLock()方法是有返回值的,它表示用來嘗試獲取鎖,如果獲取成功,則返回true,如果獲取失敗(即鎖已被其他線程獲取),則返回false,也就說這個方法無論如何都會立即返回。在拿不到鎖時不會一直在那等待。 tryLock(long time, TimeUnit unit)方法和tryLock()方法是類似的,只不過區別在于這個方法在拿不到鎖時會等待一定的時間,在時間期限之內如果還拿不到鎖,就返回false。如果如果一開始拿到鎖或者在等待期間內拿到了鎖,則返回true。 所以,一般情況下通過tryLock來獲取鎖時是這樣使用的: ~~~ Lock lock = ...; if(lock.tryLock()) { try{ //處理任務 }catch(Exception ex){ }finally{ lock.unlock(); //釋放鎖 } }else { //如果不能獲取鎖,則直接做其他事情 } ~~~ ## lockInterruptibly lockInterruptibly()方法比較特殊,當通過這個方法去獲取鎖時,如果線程正在等待獲取鎖,則這個線程能夠響應中斷,即中斷線程的等待狀態。也就使說,當兩個線程同時通過lock.lockInterruptibly()想獲取某個鎖時,假若此時線程A獲取到了鎖,而線程B只有在等待,那么對線程B調用threadB.interrupt()方法能夠中斷線程B的等待過程。 由于lockInterruptibly()的聲明中拋出了異常,所以lock.lockInterruptibly()必須放在try塊中或者在調用lockInterruptibly()的方法外聲明拋出InterruptedException。 因此lockInterruptibly()一般的使用形式如下: ~~~ public void method() throws InterruptedException { lock.lockInterruptibly(); try { //..... } finally { lock.unlock(); } } ~~~ 注意,當一個線程獲取了鎖之后,是不會被interrupt()方法中斷的。因為本身在前面的文章中講過單獨調用interrupt()方法不能中斷正在運行過程中的線程,只能中斷阻塞過程中的線程。 因此當通過lockInterruptibly()方法獲取某個鎖時,如果不能獲取到,只有進行等待的情況下,是可以響應中斷的。 而用synchronized修飾的話,當一個線程處于等待某個鎖的狀態,是無法被中斷的,只有一直等待下去。 # Lock和synchronized的選擇 總結來說,Lock和synchronized有以下幾點不同: 1. Lock是一個接口,而synchronized是Java中的關鍵字,synchronized是內置的語言實現; 2. synchronized在發生異常時,會自動釋放線程占有的鎖,因此不會導致死鎖現象發生;而Lock在發生異常時,如果沒有主動通過unLock()去釋放鎖,則很可能造成死鎖現象,因此使用Lock時需要在finally塊中釋放鎖; 3. Lock可以讓等待鎖的線程響應中斷,而synchronized卻不行,使用synchronized時,等待的線程會一直等待下去,不能夠響應中斷; 4. 通過Lock可以知道有沒有成功獲取鎖,而synchronized卻無法辦到。 5. Lock可以提高多個線程進行讀操作的效率。 在性能上來說,如果競爭資源不激烈,兩者的性能是差不多的,而當競爭資源非常激烈時(即有大量線程同時競爭),此時Lock的性能要遠遠優于synchronized。所以說,在具體使用時要根據適當情況選擇。 # ReentrantLock ## lock用法 ReentrantLock,意思是“可重入鎖”,關于可重入鎖的概念在下一節講述。ReentrantLock是唯一實現了Lock接口的類,并且ReentrantLock提供了更多的方法。下面通過一些實例看具體看一下如何使用ReentrantLock。 例子1,lock()的正確使用方法 ~~~ package testThread; import java.util.ArrayList; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class TestThread { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); public static void main(String[] args) { final TestThread testThread = new TestThread(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); } private void insert(Thread thread) { //注意這個地方 Lock lock = new ReentrantLock(); lock.lock(); try { System.out.println(thread.getName() + "得到了鎖"); for (int i = 0; i < 5; i++) { arrayList.add(i); } } catch (Exception e) { e.printStackTrace(); } finally { System.out.println(thread.getName() + "釋放鎖"); lock.unlock(); } } } ~~~ 各位朋友先想一下這段代碼的輸出結果是什么? ~~~ Thread-0得到了鎖 Thread-1得到了鎖 Thread-1釋放鎖 Thread-0釋放鎖 ~~~ 也許有朋友會問,怎么會輸出這個結果?第二個線程怎么會在第一個線程釋放鎖之前得到了鎖?原因在于,在insert方法中的lock變量是局部變量,每個線程執行該方法時都會保存一個副本,那么理所當然每個線程執行到lock.lock()處獲取的是不同的鎖,所以就不會發生沖突。 知道了原因改起來就比較容易了,只需要將lock聲明為類的屬性即可 ~~~ package testThread; import java.util.ArrayList; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class TestThread { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); public static void main(String[] args) { final TestThread testThread = new TestThread(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); } private void insert(Thread thread) { lock.lock(); try { System.out.println(thread.getName() + "得到了鎖"); for (int i = 0; i < 5; i++) { arrayList.add(i); } } catch (Exception e) { e.printStackTrace(); } finally { System.out.println(thread.getName() + "釋放鎖"); lock.unlock(); } } } ~~~ 這樣就是正確地使用Lock的方法了 ## tryLock ~~~ package testThread; import com.sun.org.apache.bcel.internal.generic.IF_ACMPEQ; import java.util.ArrayList; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class TestThread { private ArrayList<Integer> arrayList = new ArrayList<Integer>(); private Lock lock = new ReentrantLock(); public static void main(String[] args) { final TestThread testThread = new TestThread(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); new Thread() { public void run() { testThread.insert(Thread.currentThread()); } }.start(); } private void insert(Thread thread) { if (lock.tryLock()) { try { System.out.println(thread.getName() + "得到了鎖"); for (int i = 0; i < 5; i++) { arrayList.add(i); } } catch (Exception e) { e.printStackTrace(); } finally { System.out.println(thread.getName() + "釋放鎖"); lock.unlock(); } } else { System.out.println(thread.getName() + "獲取鎖失敗"); } } } ~~~ 輸出結果 ~~~ Thread-0得到了鎖 Thread-0釋放鎖 Thread-1得到了鎖 Thread-1釋放鎖 ~~~ ## lockInterruptibly lockInterruptibly()響應中斷的使用方法: ~~~ public class Test { private Lock lock = new ReentrantLock(); public static void main(String[] args) { Test test = new Test(); MyThread thread1 = new MyThread(test); MyThread thread2 = new MyThread(test); thread1.start(); thread2.start(); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } //調用中斷方法來測試能否中斷等待中的線程 thread2.interrupt(); } public void insert(Thread thread) throws InterruptedException{ lock.lockInterruptibly(); //注意,如果需要正確中斷等待鎖的線程,必須將獲取鎖放在外面,然后將InterruptedException拋出 try { System.out.println(thread.getName()+"得到了鎖"); long startTime = System.currentTimeMillis(); for( ; ;) { if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE) break; //插入數據 } } finally { System.out.println(Thread.currentThread().getName()+"執行finally"); lock.unlock(); System.out.println(thread.getName()+"釋放了鎖"); } } } class MyThread extends Thread { private Test test = null; public MyThread(Test test) { this.test = test; } @Override public void run() { try { test.insert(Thread.currentThread()); } catch (InterruptedException e) { System.out.println(Thread.currentThread().getName()+"被中斷"); } } } ~~~ 運行之后,發現thread2能夠被正確中斷 ## ReadWriteLock ReadWriteLock也是一個接口,在它里面只定義了兩個方法
                  <ruby id="bdb3f"></ruby>

                  <p id="bdb3f"><cite id="bdb3f"></cite></p>

                    <p id="bdb3f"><cite id="bdb3f"><th id="bdb3f"></th></cite></p><p id="bdb3f"></p>
                      <p id="bdb3f"><cite id="bdb3f"></cite></p>

                        <pre id="bdb3f"></pre>
                        <pre id="bdb3f"><del id="bdb3f"><thead id="bdb3f"></thead></del></pre>

                        <ruby id="bdb3f"><mark id="bdb3f"></mark></ruby><ruby id="bdb3f"></ruby>
                        <pre id="bdb3f"><pre id="bdb3f"><mark id="bdb3f"></mark></pre></pre><output id="bdb3f"></output><p id="bdb3f"></p><p id="bdb3f"></p>

                        <pre id="bdb3f"><del id="bdb3f"><progress id="bdb3f"></progress></del></pre>

                              <ruby id="bdb3f"></ruby>

                              哎呀哎呀视频在线观看