[TOC]
# join操作
## 簡介
* 語法結構
~~~
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
~~~
Hive 支持等值連接(equality joins)、外連接(outer joins)和左右連接(`left/right joins`)。
Hive **不支持非等值的連接**,因為非等值連接非常難轉化到 map/reduce 任務。
另外,Hive 支持多于 2 個表的連接。
寫 join 查詢時,需要注意幾個關鍵點:
## 只支持等值join
例如:
~~~
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department = b.department)
~~~
是正確的,
然而:
~~~
SELECT a.* FROM a JOIN b ON (a.id>b.id)
~~~
是錯誤的。
## 可以 join 多于 2 個表
例如
~~~
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
~~~
如果join中多個表的 join key 是同一個,則 join 會被轉化為單個 `map/reduce` 任務,例如:
~~~
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c
ON (c.key = b.key1)
~~~
被轉化為單個 map/reduce 任務,因為 join 中只使用了 b.key1 作為 join key。
~~~
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2)
~~~
而這一 join 被轉化為 2 個 map/reduce 任務。因為 b.key1 用于第一次 join 條件,而 b.key2 用于第二次 join。
## join 時,每次 map/reduce 任務的邏輯
**reducer 會緩存 join 序列中除了最后一個表的所有表的記錄** ,再通過最后一個表將結果序列化到文件系統。這一實現有助于在 reduce 端減少內存的使用量。實踐中,**應該把最大的那個表寫在最后**(否則會因為緩存浪費大量內存)。例如:
~~~
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
~~~
所有表都使用同一個 join key(使用 1 次 map/reduce 任務計算)。Reduce 端會緩存 a 表和 b 表的記錄,然后每次取得一個 c 表的記錄就計算一次 join 結果,類似的還有:
~~~
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
~~~
這里用了 2 次 map/reduce 任務。第一次緩存 a 表,用 b 表序列化;第二次緩存第一次 map/reduce 任務的結果,然后用 c 表序列化。
## LEFT,RIGHT 和 FULL OUTER 關鍵字用于處理 join 中空記錄的情況
full outer join是2個表全表匹配,沒匹配上就顯示null
left outer join和left join一樣
left semi join只顯示左表數據不顯示右表的,只顯示左邊能和右邊匹配的數據
例如:
~~~
SELECT a.val, b.val FROM
a LEFT OUTER JOIN b ON (a.key=b.key)
~~~
對應所有 a 表中的記錄都有一條記錄輸出。輸出的結果應該是 a.val, b.val,當 a.key=b.key 時,而當 b.key 中找不到等值的 a.key 記錄時也會輸出:
a.val, NULL
所以 a 表中的所有記錄都被保留了;
`"a RIGHT OUTER JOIN b"`會保留所有 b 表的記錄。
Join 發生在 WHERE 子句之前。如果你想限制 join 的輸出,應該在 WHERE 子句中寫過濾條件——或是在 join 子句中寫。這里面一個容易混淆的問題是表分區的情況:
~~~
SELECT a.val, b.val FROM a
LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
~~~
會 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的記錄。WHERE 從句中可以使用其他列作為過濾條件。但是,如前所述,如果 b 表中找不到對應 a 表的記錄,b 表的所有列都會列出 NULL,包括 ds 列。也就是說,join 會過濾 b 表中不能找到匹配 a 表 join key 的所有記錄。這樣的話,LEFT OUTER 就使得查詢結果與 WHERE 子句無關了。解決的辦法是在 OUTER JOIN 時使用以下語法:
~~~
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND
b.ds='2009-07-07' AND
a.ds='2009-07-07')
~~~
這一查詢的結果是預先在 join 階段過濾過的,所以不會存在上述問題。這一邏輯也可以應用于 RIGHT 和 FULL 類型的 join 中。
Join 是不能交換位置的。無論是 LEFT 還是 RIGHT join,都是左連接的。
~~~
SELECT a.val1, a.val2, b.val, c.val
FROM a
JOIN b ON (a.key = b.key)
LEFT OUTER JOIN c ON (a.key = c.key)
~~~
先 join a 表到 b 表,丟棄掉所有 join key 中不匹配的記錄,然后用這一中間結果和 c 表做 join。這一表述有一個不太明顯的問題,就是當一個 key 在 a 表和 c 表都存在,但是 b 表中不存在的時候:整個記錄在第一次 join,即 a JOIN b 的時候都被丟掉了(包括a.val1,a.val2和a.key),然后我們再和 c 表 join 的時候,如果 c.key 與 a.key 或 b.key 相等,就會得到這樣的結果:NULL, NULL, NULL, c.val
## 案列
建表
~~~
hive> create table a(id int,name string)
> row format delimited fields terminated by ',';
OK
Time taken: 0.178 seconds
hive> create table b(id int,name string)
> row format delimited fields terminated by ',';
~~~
實驗:
~~~
//把對應匹配上的id都取出來
** inner join
select a.*,b.* from a inner join b on a.id=b.id;
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 7 | y | 7 | yy |
+-------+---------+-------+---------+--+
~~~
~~~
//會取出a表中的全部數據,沒有匹配到p表中的就是null
**left join
select * from a left join b on a.id=b.id;
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 1 | a | NULL | NULL |
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 4 | d | NULL | NULL |
| 7 | y | 7 | yy |
| 8 | u | NULL | NULL |
+-------+---------+-------+---------+--+
~~~
~~~
//b表全部顯示,a表沒有匹配顯示null
**right join
select * from a right join b on a.id=b.id;
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 7 | y | 7 | yy |
| NULL | NULL | 9 | pp |
+-------+---------+-------+---------+--+
~~~
~~~
//2個表全部join顯示出來
**
select * from a full outer join b on a.id=b.id;
+-------+---------+-------+---------+--+
| a.id | a.name | b.id | b.name |
+-------+---------+-------+---------+--+
| 1 | a | NULL | NULL |
| 2 | b | 2 | bb |
| 3 | c | 3 | cc |
| 4 | d | NULL | NULL |
| 7 | y | 7 | yy |
| 8 | u | NULL | NULL |
| NULL | NULL | 9 | pp |
+-------+---------+-------+---------+--+
~~~
~~~
//exists操作
// left semi join是exists操作的高效實現
**hive中的特別join
select * from a left semi join b on a.id = b.id;
+-------+---------+--+
| a.id | a.name |
+-------+---------+--+
| 2 | b |
| 3 | c |
| 7 | y |
+-------+---------+--+
相當于
select * from a where a.id exists(select b.id from b);
exists在hive中效率極低
~~~
- linux
- 常用命令
- 高級文本命令
- 面試題
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推薦
- java高級特性
- 多線程
- 實現線程的三種方式
- 同步關鍵詞
- 讀寫鎖
- 鎖的相關概念
- 多線程的join
- 有三個線程T1 T2 T3,保證順序執行
- java五種線程池
- 守護線程與普通線程
- ThreadLocal
- BlockingQueue消息隊列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty簡介
- 案例一發送字符串
- 案例二發送對象
- 輕量級RPC開發
- 簡介
- spring(IOC/AOP)
- spring初始化順序
- 通過ApplicationContextAware加載Spring上下文
- InitializingBean的作用
- 結論
- 自定義注解
- zk在框架中的應用
- hadoop
- 簡介
- hadoop集群搭建
- hadoop單機安裝
- HDFS簡介
- hdfs基本操作
- hdfs環境搭建
- 常見問題匯總
- hdfs客戶端操作
- mapreduce工作機制
- 案列-單詞統計
- 局部聚合Combiner
- 案列-流量統計(分區,排序,比較)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法實現
- 案例-求topN(分組)
- 自定義inputFormat
- 自定義outputFormat
- 框架運算全流程
- mapreduce的優化方案
- HA機制
- Hive
- 安裝
- DDL操作
- 創建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 嚴格模式
- 數據類型
- shell參數
- 函數
- 內置運算符
- 內置函數
- 自定義函數
- Transform實現
- 特殊分割符處理
- 案例
- 級聯求和accumulate
- flume
- 簡介
- 安裝
- 常用的組件
- 攔截器
- 案例
- 采集目錄到HDFS
- 采集文件到HDFS
- 多個agent串聯
- 日志采集和匯總
- 自定義攔截器
- 高可用配置
- 使用注意
- sqoop
- 安裝
- 數據導入
- 導入數據到HDFS
- 導入關系表到HIVE
- 導入表數據子集
- 增量導入
- 數據導出
- 作業
- 原理
- azkaban
- 簡介
- 安裝
- 案例
- 簡介
- command類型單一job
- command類型多job工作流flow
- HDFS操作任務
- mapreduce任務
- hive腳本任務
- hbase
- 簡介
- 安裝
- 命令行
- 基本CURD
- 過濾器查詢
- 系統架構
- 物理存儲
- 尋址機制
- 讀寫過程
- Region管理
- master工作機制
- 建表高級屬性
- 與mapreduce結合
- 協處理器
- 點擊流平臺開發
- 簡介
- storm
- 簡介
- 安裝
- 集群啟動及任務過程分析
- 單詞統計
- 并行度
- ACK容錯機制
- ACK簡介